Python机器学习之基于Pytorch实现猫狗分类


Posted in Python onJune 08, 2021

一、环境配置

安装Anaconda

配置Pytorch

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

二、数据集的准备

1.数据集的下载

kaggle网站的数据集下载地址:
https://www.kaggle.com/lizhensheng/-2000

2.数据集的分类

将下载的数据集进行解压操作,然后进行分类
分类如下(每个文件夹下包括cats和dogs文件夹)

Python机器学习之基于Pytorch实现猫狗分类 

三、猫狗分类的实例

导入相应的库

# 导入库
import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
 
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets

设置超参数

# 设置超参数
#每次的个数
BATCH_SIZE = 20
#迭代次数
EPOCHS = 10
#采用cpu还是gpu进行计算
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

图像处理与图像增强

# 数据预处理
 
transform = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

读取数据集和导入数据

# 读取数据
 
dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)
 
print(dataset_train.imgs)
 
# 对应文件夹的label
 
print(dataset_train.class_to_idx)
 
dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)
 
# 对应文件夹的label
 
print(dataset_test.class_to_idx)
 
# 导入数据
 
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)

定义网络模型

# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3) 
        self.max_pool2 = nn.MaxPool2d(2) 
        self.conv3 = nn.Conv2d(64, 64, 3) 
        self.conv4 = nn.Conv2d(64, 64, 3) 
        self.max_pool3 = nn.MaxPool2d(2) 
        self.conv5 = nn.Conv2d(64, 128, 3) 
        self.conv6 = nn.Conv2d(128, 128, 3) 
        self.max_pool4 = nn.MaxPool2d(2) 
        self.fc1 = nn.Linear(4608, 512) 
        self.fc2 = nn.Linear(512, 1)
  
    def forward(self, x): 
        in_size = x.size(0) 
        x = self.conv1(x) 
        x = F.relu(x) 
        x = self.max_pool1(x) 
        x = self.conv2(x) 
        x = F.relu(x) 
        x = self.max_pool2(x) 
        x = self.conv3(x) 
        x = F.relu(x) 
        x = self.conv4(x) 
        x = F.relu(x) 
        x = self.max_pool3(x) 
        x = self.conv5(x) 
        x = F.relu(x) 
        x = self.conv6(x) 
        x = F.relu(x)
        x = self.max_pool4(x) 
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x) 
        x = self.fc2(x) 
        x = torch.sigmoid(x) 
        return x
 
modellr = 1e-4
 
# 实例化模型并且移动到GPU
 
model = ConvNet().to(DEVICE)
 
# 选择简单暴力的Adam优化器,学习率调低
 
optimizer = optim.Adam(model.parameters(), lr=modellr)

调整学习率

def adjust_learning_rate(optimizer, epoch):
 
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    modellrnew = modellr * (0.1 ** (epoch // 5)) 
    print("lr:",modellrnew) 
    for param_group in optimizer.param_groups: 
        param_group['lr'] = modellrnew

定义训练过程

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
 
    model.train() 
    for batch_idx, (data, target) in enumerate(train_loader):
 
        data, target = data.to(device), target.to(device).float().unsqueeze(1)
 
        optimizer.zero_grad()
 
        output = model(data)
 
        # print(output)
 
        loss = F.binary_cross_entropy(output, target)
 
        loss.backward()
 
        optimizer.step()
 
        if (batch_idx + 1) % 10 == 0:
 
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
 
                    100. * (batch_idx + 1) / len(train_loader), loss.item()))
# 定义测试过程
 
def val(model, device, test_loader):
 
    model.eval()
 
    test_loss = 0
 
    correct = 0
 
    with torch.no_grad():
 
        for data, target in test_loader:
 
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
 
            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()
 
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

定义保存模型和训练

# 训练
for epoch in range(1, EPOCHS + 1):
 
    adjust_learning_rate(optimizer, epoch)
    train(model, DEVICE, train_loader, optimizer, epoch) 
    val(model, DEVICE, test_loader)
 
torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')

训练结果

Python机器学习之基于Pytorch实现猫狗分类 

四、实现分类预测测试

准备预测的图片进行测试

from __future__ import print_function, division
from PIL import Image
 
from torchvision import transforms
import torch.nn.functional as F
 
import torch
import torch.nn as nn
import torch.nn.parallel
# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)
 
    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x
# 模型存储路径
model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'
 
# ------------------------ 加载数据 --------------------------- #
# Data augmentation and normalization for training
# Just normalization for validation
# 定义预训练变换
# 数据预处理
transform_test = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
 
 
class_names = ['cat', 'dog']  # 这个顺序很重要,要和训练时候的类名顺序一致
 
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# ------------------------ 载入模型并且训练 --------------------------- #
model = torch.load(model_save_path)
model.eval()
# print(model)
 
image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')
#
image_tensor = transform_test(image_PIL)
# 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
# 没有这句话会报错
image_tensor = image_tensor.to(device)
 
out = model(image_tensor)
pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
print(class_names[pred])

预测结果

Python机器学习之基于Pytorch实现猫狗分类
Python机器学习之基于Pytorch实现猫狗分类

实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。

到此这篇关于Python机器学习之基于Pytorch实现猫狗分类的文章就介绍到这了,更多相关Pytorch实现猫狗分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python Web框架Flask下网站开发入门实例
Feb 08 Python
Python实现爬取百度贴吧帖子所有楼层图片的爬虫示例
Apr 26 Python
Python对数据进行插值和下采样的方法
Jul 03 Python
Python使用sorted对字典的key或value排序
Nov 15 Python
python射线法判断一个点在图形区域内外
Jun 28 Python
基于python实现把图片转换成素描
Nov 13 Python
python生成13位或16位时间戳以及反向解析时间戳的实例
Mar 03 Python
python数据处理——对pandas进行数据变频或插值实例
Apr 22 Python
python让函数不返回结果的方法
Jun 22 Python
Django如何使用asyncio协程和ThreadPoolExecutor多线程
Oct 12 Python
Python自然语言处理之切分算法详解
Apr 25 Python
解决Pytorch修改预训练模型时遇到key不匹配的情况
Jun 05 Python
Python中json.load()和json.loads()有哪些区别
python 爬取哔哩哔哩up主信息和投稿视频
Jun 07 #Python
OpenCV-Python直方图均衡化实现图像去雾
OpenCV-Python实现人脸磨皮算法
Python实现拼音转换
Python实现简繁体转换
在Python中如何使用yield
Jun 07 #Python
You might like
杏林同学录(九)
2006/10/09 PHP
PHP5中使用PDO连接数据库的方法
2010/08/01 PHP
基于php常用正则表达式的整理汇总
2013/06/08 PHP
分割GBK中文遭遇乱码的解决方法
2013/08/09 PHP
is_uploaded_file函数引发的不能上传文件问题
2013/10/29 PHP
Symfony2使用Doctrine进行数据库查询方法实例总结
2016/03/18 PHP
Laravel框架用户登陆身份验证实现方法详解
2017/09/14 PHP
ThinkPHP实现转换数据库查询结果数据到对应类型的方法
2017/11/16 PHP
动态加载js的几种方法
2006/10/23 Javascript
json数据的列循环示例
2013/09/06 Javascript
读取input:file的路径并显示本地图片的方法
2013/09/23 Javascript
JavaScript也谈内存优化
2014/06/06 Javascript
Javascript中this关键字的一些小知识
2015/03/15 Javascript
Javascript编写俄罗斯方块思路及实例
2015/07/07 Javascript
jQuery插件实现静态HTML验证码校验
2015/11/06 Javascript
js实现的鼠标滚轮滚动切换页面效果(类似360默认页面滚动切换效果)
2016/01/27 Javascript
Webwork 实现文件上传下载代码详解
2016/02/02 Javascript
js 获取经纬度的实现方法
2016/06/20 Javascript
AngularJS入门教程引导程序
2016/08/18 Javascript
KVM虚拟化技术之使用Qemu-kvm创建和管理虚拟机的方法
2016/10/05 Javascript
Javascript单例模式的介绍和实例
2016/10/08 Javascript
深入研究React中setState源码
2017/11/17 Javascript
详解Vue.js自定义tipOnce指令用法实例
2018/12/19 Javascript
详解vue 不同环境配置不同的打包命令
2019/04/07 Javascript
jquery实现两个div中的元素相互拖动的方法分析
2020/04/05 jQuery
python3.3使用tkinter开发猜数字游戏示例
2014/03/14 Python
Python实现的生成自我描述脚本分享(很有意思的程序)
2014/07/18 Python
python实现跨excel sheet复制代码实例
2020/03/03 Python
python实现在线翻译
2020/06/18 Python
星空联盟C# .net笔试题
2014/12/05 面试题
自我评价个人范文
2013/12/16 职场文书
大学生学习2014年全国两会心得体会
2014/03/12 职场文书
成语的广告词
2014/03/19 职场文书
经营管理策划方案
2014/05/22 职场文书
优秀班主任事迹材料
2014/12/16 职场文书
如何用H5实现好玩的2048小游戏
2022/07/23 HTML / CSS