使用Pytorch来拟合函数方式


Posted in Python onJanuary 14, 2020

其实各大深度学习框架背后的原理都可以理解为拟合一个参数数量特别庞大的函数,所以各框架都能用来拟合任意函数,Pytorch也能。

在这篇博客中,就以拟合y = ax + b为例(a和b为需要拟合的参数),说明在Pytorch中如何拟合一个函数。

一、定义拟合网络

1、观察普通的神经网络的优化流程

# 定义网络
net = ...
# 定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0005)
# 定义损失函数
loss_op = torch.nn.MSELoss(reduction='sum')
# 优化
for step, (inputs, tag) in enumerate(dataset_loader):
 # 向前传播
 outputs = net(inputs)
 # 计算损失
 loss = loss_op(tag, outputs)
 # 清空梯度
 optimizer.zero_grad()
 # 向后传播
 loss.backward()
 # 更新梯度
 optimizer.step()

上面的代码就是一般情况下的流程。为了能使用Pytorch内置的优化器,所以我们需要定义一个一个网络,实现函数parameters(返回需要优化的参数)和forward(向前传播);为了能支持GPU优化,还需要实现cuda和cpu两个函数,把参数从内存复制到GPU上和从GPU复制回内存。

基于以上要求,网络的定义就类似于:

class Net:
  def __init__(self):
    # 在这里定义要求的参数
    pass

  def cuda(self):
    # 传输参数到GPU
    pass

  def cpu(self):
    # 把参数传输回内存
    pass

  def forward(self, inputs):
   # 实现向前传播,就是根据输入inputs计算一遍输出
    pass

  def parameters(self):
   # 返回参数
    pass

在拟合数据量很大时,还可以使用GPU来加速;如果没有英伟达显卡,则可以不实现cuda和cpu这两个函数。

2、初始化网络

回顾本文目的,拟合: y = ax + b, 所以在__init__函数中就需要定义a和b两个参数,另外为了实现parameters、cpu和cuda,还需要定义属性__parameters和__gpu:

def __init__(self):
    # y = a*x + b
    self.a = torch.rand(1, requires_grad=True) # 参数a
    self.b = torch.rand(1, requires_grad=True) # 参数b
    self.__parameters = dict(a=self.a, b=self.b) # 参数字典
    self.___gpu = False # 是否使用gpu来拟合

要拟合的参数,不能初始化为0! ,一般使用随机值即可。还需要把requires_grad参数设置为True,这是为了支持向后传播。

3、实现向前传播

def forward(self, inputs):
    return self.a * inputs + self.b

非常的简单,就是根据输入inputs计算一遍输出,在本例中,就是计算一下 y = ax + b。计算完了要记得返回计算的结果。

4、把参数传送到GPU

为了支持GPU来加速拟合,需要把参数传输到GPU,且需要更新参数字典__parameters:

def cuda(self):
    if not self.___gpu:
      self.a = self.a.cuda().detach().requires_grad_(True) # 把a传输到gpu
      self.b = self.b.cuda().detach().requires_grad_(True) # 把b传输到gpu
      self.__parameters = dict(a=self.a, b=self.b) # 更新参数
      self.___gpu = True # 更新标志,表示参数已经传输到gpu了
    # 返回self,以支持链式调用
    return self

参数a和b,都是先调用detach再调用requires_grad_,是为了避免错误raise ValueError("can't optimize a non-leaf Tensor")(参考:ValueError: can't optimize a non-leaf Tensor?)。

4、把参数传输回内存

类似于cuda函数,不做过多解释。

def cpu(self):
    if self.___gpu:
      self.a = self.a.cpu().detach().requires_grad_(True)
      self.b = self.b.cpu().detach().requires_grad_(True)
      self.__parameters = dict(a=self.a, b=self.b)
      self.___gpu = False
    return self

5、返回网络参数

为了能使用Pytorch内置的优化器,就要实现parameters函数,观察Pytorch里面的实现:

def parameters(self, recurse=True):
    r"""...
    """
    for name, param in self.named_parameters(recurse=recurse):
      yield param

实际上就是使用yield返回网络的所有参数,因此本例中的实现如下:

def parameters(self):
    for name, param in self.__parameters.items():
      yield param

完整的实现将会放在后面。

二、测试

1、生成测试数据

def main():
  # 生成虚假数据
  x = np.linspace(1, 50, 50)
  # 系数a、b
  a = 2
  b = 1
  # 生成y
  y = a * x + b
  # 转换为Tensor
  x = torch.from_numpy(x.astype(np.float32))
  y = torch.from_numpy(y.astype(np.float32))

2、定义网络

# 定义网络
  net = Net()
  # 定义优化器
  optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0005)
  # 定义损失函数
  loss_op = torch.nn.MSELoss(reduction='sum')

3、把数据传输到GPU(可选)

# 传输到GPU
  if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    net = net.cuda()

4、定义优化器和损失函数

如果要使用GPU加速,优化器必须要在网络的参数传输到GPU之后在定义,否则优化器里的参数还是内存里的那些参数,传到GPU里面的参数不能被更新。 可以根据代码来理解这句话。

# 定义优化器
  optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0005)
  # 定义损失函数
  loss_op = torch.nn.MSELoss(reduction='sum')

5、拟合(也是优化)

# 最多优化20001次
  for i in range(1, 20001, 1):
   # 向前传播
    out = net.forward(x)
 # 计算损失
    loss = loss_op(y, out)
 # 清空梯度(非常重要)
    optimizer.zero_grad()
 # 向后传播,计算梯度
    loss.backward()
 # 更新参数
    optimizer.step()
 # 得到损失的numpy值
    loss_numpy = loss.cpu().detach().numpy()
    if i % 1000 == 0: # 每1000次打印一下损失
      print(i, loss_numpy)

    if loss_numpy < 0.00001: # 如果损失小于0.00001
     # 打印参数
     a = net.a.cpu().detach().numpy()
     b = net.b.cpu().detach().numpy()
      print(a, b)
      # 退出
      exit()

6、完整示例代码

# coding=utf-8
from __future__ import absolute_import, division, print_function
import torch
import numpy as np


class Net:
  def __init__(self):
    # y = a*x + b
    self.a = torch.rand(1, requires_grad=True) # 参数a
    self.b = torch.rand(1, requires_grad=True) # 参数b
    self.__parameters = dict(a=self.a, b=self.b) # 参数字典
    self.___gpu = False # 是否使用gpu来拟合

  def cuda(self):
    if not self.___gpu:
      self.a = self.a.cuda().detach().requires_grad_(True) # 把a传输到gpu
      self.b = self.b.cuda().detach().requires_grad_(True) # 把b传输到gpu
      self.__parameters = dict(a=self.a, b=self.b) # 更新参数
      self.___gpu = True # 更新标志,表示参数已经传输到gpu了
    # 返回self,以支持链式调用
    return self

  def cpu(self):
    if self.___gpu:
      self.a = self.a.cpu().detach().requires_grad_(True)
      self.b = self.b.cpu().detach().requires_grad_(True)
      self.__parameters = dict(a=self.a, b=self.b) # 更新参数
      self.___gpu = False
    return self

  def forward(self, inputs):
    return self.a * inputs + self.b

  def parameters(self):
    for name, param in self.__parameters.items():
      yield param


def main():

  # 生成虚假数据
  x = np.linspace(1, 50, 50)

  # 系数a、b
  a = 2
  b = 1

  # 生成y
  y = a * x + b

  # 转换为Tensor
  x = torch.from_numpy(x.astype(np.float32))
  y = torch.from_numpy(y.astype(np.float32))

  # 定义网络
  net = Net()

  # 传输到GPU
  if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    net = net.cuda()

  # 定义优化器
  optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0005)

  # 定义损失函数
  loss_op = torch.nn.MSELoss(reduction='sum')

  # 最多优化20001次
  for i in range(1, 20001, 1):
    # 向前传播
    out = net.forward(x)
    # 计算损失
    loss = loss_op(y, out)
    # 清空梯度(非常重要)
    optimizer.zero_grad()
    # 向后传播,计算梯度
    loss.backward()
    # 更新参数
    optimizer.step()
    # 得到损失的numpy值
    loss_numpy = loss.cpu().detach().numpy()
    if i % 1000 == 0: # 每1000次打印一下损失
      print(i, loss_numpy)

    if loss_numpy < 0.00001: # 如果损失小于0.00001
      # 打印参数
      a = net.a.cpu().detach().numpy()
      b = net.b.cpu().detach().numpy()
      print(a, b)
      # 退出
      exit()


if __name__ == '__main__':
  main()

以上这篇使用Pytorch来拟合函数方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Mac OS上使用mod_wsgi连接Python与Apache服务器
Dec 24 Python
python+matplotlib绘制饼图散点图实例代码
Jan 20 Python
Python从ZabbixAPI获取信息及实现Zabbix-API 监控的方法
Sep 17 Python
python3使用flask编写注册post接口的方法
Dec 28 Python
Python基于opencv实现的简单画板功能示例
Mar 04 Python
python爬取基于m3u8协议的ts文件并合并
Apr 26 Python
python实现植物大战僵尸游戏实例代码
Jun 10 Python
Python中使用双下划线防止类属性被覆盖问题
Jun 27 Python
python中sort和sorted排序的实例方法
Aug 26 Python
python读取hdfs上的parquet文件方式
Jun 06 Python
Ubuntu配置Pytorch on Graph (PoG)环境过程图解
Nov 19 Python
python文件路径操作方法总结
Dec 21 Python
pytorch 模拟关系拟合——回归实例
Jan 14 #Python
PyTorch实现AlexNet示例
Jan 14 #Python
Pytorch 实现focal_loss 多类别和二分类示例
Jan 14 #Python
Python实现钉钉订阅消息功能
Jan 14 #Python
Python Tensor FLow简单使用方法实例详解
Jan 14 #Python
Python利用全连接神经网络求解MNIST问题详解
Jan 14 #Python
基于pytorch的lstm参数使用详解
Jan 14 #Python
You might like
php获取网页内容方法总结
2008/12/04 PHP
解析如何去掉CodeIgniter URL中的index.php
2013/06/25 PHP
解析php中curl_multi的应用
2013/07/17 PHP
PHP滚动日志的代码实现
2015/06/10 PHP
Aster vs Newbee BO3 第二场2.18
2021/03/10 DOTA
JS backgroundImage控制
2009/05/19 Javascript
原生JavaScript生成GUID的实现示例
2014/09/05 Javascript
Canvas 制作动态进度加载水球详解及实例代码
2016/12/09 Javascript
js 轮播效果实例分享
2016/12/28 Javascript
理解javascript中的闭包
2017/01/11 Javascript
vue2.0结合DataTable插件实现表格动态刷新的方法详解
2017/03/17 Javascript
如何编写jquery插件
2017/03/29 jQuery
vue页面加载闪烁问题的解决方法
2018/03/28 Javascript
vue-router3.0版本中 router.push 不能刷新页面的问题
2018/05/10 Javascript
深入学习JavaScript 高阶函数
2019/06/11 Javascript
js脚本中执行java后台代码方法解析
2019/10/11 Javascript
JavaScript中clientWidth,offsetWidth,scrollWidth的区别
2021/01/25 Javascript
Python多层嵌套list的递归处理方法(推荐)
2016/06/08 Python
在Pandas中给多层索引降级的方法
2018/11/16 Python
使用python3实现操作串口详解
2019/01/01 Python
python通过配置文件共享全局变量的实例
2019/01/11 Python
Python中字符串String的基本内置函数与过滤字符模块函数的基本用法
2019/05/27 Python
浅谈pytorch池化maxpool2D注意事项
2020/02/18 Python
详解css3 object-fit属性
2018/07/27 HTML / CSS
金融专业大学生自我评价
2014/01/09 职场文书
区级文明单位申报材料
2014/05/15 职场文书
个人委托书范文
2015/01/28 职场文书
商超业务员岗位职责
2015/02/13 职场文书
考博导师推荐信范文
2015/03/27 职场文书
2015年班级工作总结范文
2015/04/03 职场文书
毕业论文致谢范文
2015/05/14 职场文书
民事答辩状格式范文
2015/05/21 职场文书
考研经验交流会策划书
2015/11/02 职场文书
PHP实现rar解压读取扩展包小结
2021/06/03 PHP
python自动化测试之Selenium详解
2022/03/13 Python
js前端设计模式优化50%表单校验代码示例
2022/06/21 Javascript