Pytorch 实现focal_loss 多类别和二分类示例


Posted in Python onJanuary 14, 2020

我就废话不多说了,直接上代码吧!

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
 
 
# 支持多分类和二分类
class FocalLoss(nn.Module):
  """
  This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
  'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
    Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt)
  :param num_class:
  :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
  :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
          focus on hard misclassified example
  :param smooth: (float,double) smooth value when cross entropy
  :param balance_index: (int) balance class index, should be specific when alpha is float
  :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
  """
 
  def __init__(self, num_class, alpha=None, gamma=2, balance_index=-1, smooth=None, size_average=True):
    super(FocalLoss, self).__init__()
    self.num_class = num_class
    self.alpha = alpha
    self.gamma = gamma
    self.smooth = smooth
    self.size_average = size_average
 
    if self.alpha is None:
      self.alpha = torch.ones(self.num_class, 1)
    elif isinstance(self.alpha, (list, np.ndarray)):
      assert len(self.alpha) == self.num_class
      self.alpha = torch.FloatTensor(alpha).view(self.num_class, 1)
      self.alpha = self.alpha / self.alpha.sum()
    elif isinstance(self.alpha, float):
      alpha = torch.ones(self.num_class, 1)
      alpha = alpha * (1 - self.alpha)
      alpha[balance_index] = self.alpha
      self.alpha = alpha
    else:
      raise TypeError('Not support alpha type')
 
    if self.smooth is not None:
      if self.smooth < 0 or self.smooth > 1.0:
        raise ValueError('smooth value should be in [0,1]')
 
  def forward(self, input, target):
    logit = F.softmax(input, dim=1)
 
    if logit.dim() > 2:
      # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
      logit = logit.view(logit.size(0), logit.size(1), -1)
      logit = logit.permute(0, 2, 1).contiguous()
      logit = logit.view(-1, logit.size(-1))
    target = target.view(-1, 1)
 
    # N = input.size(0)
    # alpha = torch.ones(N, self.num_class)
    # alpha = alpha * (1 - self.alpha)
    # alpha = alpha.scatter_(1, target.long(), self.alpha)
    epsilon = 1e-10
    alpha = self.alpha
    if alpha.device != input.device:
      alpha = alpha.to(input.device)
 
    idx = target.cpu().long()
    one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_()
    one_hot_key = one_hot_key.scatter_(1, idx, 1)
    if one_hot_key.device != logit.device:
      one_hot_key = one_hot_key.to(logit.device)
 
    if self.smooth:
      one_hot_key = torch.clamp(
        one_hot_key, self.smooth, 1.0 - self.smooth)
    pt = (one_hot_key * logit).sum(1) + epsilon
    logpt = pt.log()
 
    gamma = self.gamma
 
    alpha = alpha[idx]
    loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
 
    if self.size_average:
      loss = loss.mean()
    else:
      loss = loss.sum()
    return loss
 
 
 
class BCEFocalLoss(torch.nn.Module):
  """
  二分类的Focalloss alpha 固定
  """
  def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'):
    super().__init__()
    self.gamma = gamma
    self.alpha = alpha
    self.reduction = reduction
 
  def forward(self, _input, target):
    pt = torch.sigmoid(_input)
    alpha = self.alpha
    loss = - alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - \
        (1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt)
    if self.reduction == 'elementwise_mean':
      loss = torch.mean(loss)
    elif self.reduction == 'sum':
      loss = torch.sum(loss)
    return loss

以上这篇Pytorch 实现focal_loss 多类别和二分类示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
tornado框架blog模块分析与使用
Nov 21 Python
跟老齐学Python之折腾一下目录
Oct 24 Python
python通过定义一个类实例作为ftp回调方法
May 04 Python
Python中第三方库Requests库的高级用法详解
Mar 12 Python
Python+selenium实现截图图片并保存截取的图片
Jan 05 Python
Python实现判断字符串中包含某个字符的判断函数示例
Jan 08 Python
对python3中, print横向输出的方法详解
Jan 28 Python
如何使用Flask-Migrate拓展数据库表结构
Jul 24 Python
Python bytes string相互转换过程解析
Mar 05 Python
在CentOS7下安装Python3教程解析
Jul 09 Python
pycharm中如何自定义设置通过“ctrl+滚轮”进行放大和缩小实现方法
Sep 16 Python
解决Pytorch dataloader时报错每个tensor维度不一样的问题
May 28 Python
Python实现钉钉订阅消息功能
Jan 14 #Python
Python Tensor FLow简单使用方法实例详解
Jan 14 #Python
Python利用全连接神经网络求解MNIST问题详解
Jan 14 #Python
基于pytorch的lstm参数使用详解
Jan 14 #Python
Python利用逻辑回归模型解决MNIST手写数字识别问题详解
Jan 14 #Python
np.random.seed() 的使用详解
Jan 14 #Python
下载与当前Chrome对应的chromedriver.exe(用于python+selenium)
Jan 14 #Python
You might like
如何过滤高亮显示非法字符
2006/10/09 PHP
destoon在各个服务器下设置URL Rewrite(伪静态)的方法
2014/06/21 Servers
微信公众平台消息接口校验与消息接口响应实例
2014/12/23 PHP
PHP SPL标准库之SplFixedArray使用实例
2015/05/12 PHP
PHP运行模式汇总
2016/11/06 PHP
极酷的javascirpt,让你随意编辑任何网页
2007/02/25 Javascript
通过JavaScript控制字体大小的代码
2011/10/04 Javascript
javascript中定义私有方法说明(private method)
2014/01/27 Javascript
js添加千分位的实现代码(超简单)
2016/08/01 Javascript
js利用clipboardData实现截屏粘贴功能
2016/10/12 Javascript
vue.js通过自定义指令实现数据拉取更新的实现方法
2016/10/18 Javascript
nodejs操作mysql实现增删改查的实例
2017/05/28 NodeJs
vue-router 权限控制的示例代码
2017/09/21 Javascript
Angular 4根据组件名称动态创建出组件的方法教程
2017/11/01 Javascript
10 种最常见的 Javascript 错误(频率最高)
2018/02/08 Javascript
Nuxt.js开启SSR渲染的教程详解
2018/11/30 Javascript
Vue.js组件高级特性实例详解
2018/12/24 Javascript
vue柱状进度条图像的完美实现方案
2019/08/26 Javascript
Vue 中获取当前时间并实时刷新的实现代码
2020/05/12 Javascript
Python学习笔记之常用函数及说明
2014/05/23 Python
Python爬虫之模拟知乎登录的方法教程
2017/05/25 Python
对python中的try、except、finally 执行顺序详解
2019/02/18 Python
django中media媒体路径设置的步骤
2019/11/15 Python
使用python turtle画高达
2020/01/19 Python
Python包和模块的分发详细介绍
2020/06/19 Python
如何验证python安装成功
2020/07/06 Python
python 30行代码实现蚂蚁森林自动偷能量
2021/02/08 Python
使用Filters滤镜弥补CSS3的跨浏览器问题以及兼容低版本IE
2013/01/23 HTML / CSS
生物制药自我鉴定
2014/01/25 职场文书
幼儿园庆六一游园活动方案
2014/01/29 职场文书
表彰会主持词
2014/03/26 职场文书
抗洪救灾先进集体事迹材料
2014/05/26 职场文书
2014年行政部工作总结
2014/11/19 职场文书
自主招生推荐信格式模板
2015/03/24 职场文书
公司承诺书格式范文
2015/04/28 职场文书
《我的美好婚事》动画化决定纪念插画与先导PV公开
2022/04/06 日漫