Pytorch 实现focal_loss 多类别和二分类示例


Posted in Python onJanuary 14, 2020

我就废话不多说了,直接上代码吧!

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
 
 
# 支持多分类和二分类
class FocalLoss(nn.Module):
  """
  This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
  'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
    Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt)
  :param num_class:
  :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
  :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
          focus on hard misclassified example
  :param smooth: (float,double) smooth value when cross entropy
  :param balance_index: (int) balance class index, should be specific when alpha is float
  :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
  """
 
  def __init__(self, num_class, alpha=None, gamma=2, balance_index=-1, smooth=None, size_average=True):
    super(FocalLoss, self).__init__()
    self.num_class = num_class
    self.alpha = alpha
    self.gamma = gamma
    self.smooth = smooth
    self.size_average = size_average
 
    if self.alpha is None:
      self.alpha = torch.ones(self.num_class, 1)
    elif isinstance(self.alpha, (list, np.ndarray)):
      assert len(self.alpha) == self.num_class
      self.alpha = torch.FloatTensor(alpha).view(self.num_class, 1)
      self.alpha = self.alpha / self.alpha.sum()
    elif isinstance(self.alpha, float):
      alpha = torch.ones(self.num_class, 1)
      alpha = alpha * (1 - self.alpha)
      alpha[balance_index] = self.alpha
      self.alpha = alpha
    else:
      raise TypeError('Not support alpha type')
 
    if self.smooth is not None:
      if self.smooth < 0 or self.smooth > 1.0:
        raise ValueError('smooth value should be in [0,1]')
 
  def forward(self, input, target):
    logit = F.softmax(input, dim=1)
 
    if logit.dim() > 2:
      # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
      logit = logit.view(logit.size(0), logit.size(1), -1)
      logit = logit.permute(0, 2, 1).contiguous()
      logit = logit.view(-1, logit.size(-1))
    target = target.view(-1, 1)
 
    # N = input.size(0)
    # alpha = torch.ones(N, self.num_class)
    # alpha = alpha * (1 - self.alpha)
    # alpha = alpha.scatter_(1, target.long(), self.alpha)
    epsilon = 1e-10
    alpha = self.alpha
    if alpha.device != input.device:
      alpha = alpha.to(input.device)
 
    idx = target.cpu().long()
    one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_()
    one_hot_key = one_hot_key.scatter_(1, idx, 1)
    if one_hot_key.device != logit.device:
      one_hot_key = one_hot_key.to(logit.device)
 
    if self.smooth:
      one_hot_key = torch.clamp(
        one_hot_key, self.smooth, 1.0 - self.smooth)
    pt = (one_hot_key * logit).sum(1) + epsilon
    logpt = pt.log()
 
    gamma = self.gamma
 
    alpha = alpha[idx]
    loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
 
    if self.size_average:
      loss = loss.mean()
    else:
      loss = loss.sum()
    return loss
 
 
 
class BCEFocalLoss(torch.nn.Module):
  """
  二分类的Focalloss alpha 固定
  """
  def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'):
    super().__init__()
    self.gamma = gamma
    self.alpha = alpha
    self.reduction = reduction
 
  def forward(self, _input, target):
    pt = torch.sigmoid(_input)
    alpha = self.alpha
    loss = - alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - \
        (1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt)
    if self.reduction == 'elementwise_mean':
      loss = torch.mean(loss)
    elif self.reduction == 'sum':
      loss = torch.sum(loss)
    return loss

以上这篇Pytorch 实现focal_loss 多类别和二分类示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单介绍Python下自己编写web框架的一些要点
Apr 29 Python
老生常谈Python startswith()函数与endswith函数
Sep 08 Python
Python采集代理ip并判断是否可用和定时更新的方法
May 07 Python
Python 一句话生成字母表的方法
Jan 02 Python
python实现将一维列表转换为多维列表(numpy+reshape)
Nov 29 Python
Python Sympy计算梯度、散度和旋度的实例
Dec 06 Python
使用pyqt5 tablewidget 单元格设置正则表达式
Dec 13 Python
python基于property()函数定义属性
Jan 22 Python
python3中的logging记录日志实现过程及封装成类的操作
May 12 Python
python中setuptools的作用是什么
Jun 19 Python
通过实例了解python__slots__使用方法
Sep 14 Python
解决pycharm 格式报错tabs和space不一致问题
Feb 26 Python
Python实现钉钉订阅消息功能
Jan 14 #Python
Python Tensor FLow简单使用方法实例详解
Jan 14 #Python
Python利用全连接神经网络求解MNIST问题详解
Jan 14 #Python
基于pytorch的lstm参数使用详解
Jan 14 #Python
Python利用逻辑回归模型解决MNIST手写数字识别问题详解
Jan 14 #Python
np.random.seed() 的使用详解
Jan 14 #Python
下载与当前Chrome对应的chromedriver.exe(用于python+selenium)
Jan 14 #Python
You might like
php5.3以后的版本连接sqlserver2000的方法
2014/07/28 PHP
php 参数过滤、数据过滤详解
2015/10/26 PHP
Yii2.0使用阿里云OSS的SDK上传图片、下载、删除图片示例
2017/09/20 PHP
prototype Element学习笔记(篇二)
2008/10/26 Javascript
js 鼠标点击事件及其它捕获
2009/06/04 Javascript
jQuery中实现动画效果的基本操作介绍
2013/04/16 Javascript
jquery实现checkbox全选全不选的简单实例
2013/12/31 Javascript
教你如何自定义百度分享插件以及bshare分享插件的分享按钮
2014/06/20 Javascript
jQuery学习笔记之 Ajax操作篇(一) - 数据加载
2014/06/23 Javascript
JavaScript通过字符串调用函数的实现方法
2015/03/18 Javascript
JS定时检测任务任务完成后执行下一步的解决办法
2016/12/22 Javascript
node.js程序作为服务并在windows下开机自启动(用forever)
2017/03/29 Javascript
vue项目中用cdn优化的方法
2018/01/03 Javascript
如何在基于vue-cli的项目自定义打包环境
2018/11/10 Javascript
es6 filter() 数组过滤方法总结
2019/04/03 Javascript
js中值引用和地址引用实例分析
2019/06/21 Javascript
pm2启动ssr失败的解决方法
2019/06/29 Javascript
微信小程序实现张图片合成为一张并下载
2019/07/16 Javascript
Python HTMLParser模块解析html获取url实例
2015/04/08 Python
Fiddler如何抓取手机APP数据包
2016/01/22 Python
python实现教务管理系统
2018/03/12 Python
Django框架 查询Extra功能实现解析
2019/09/04 Python
Python高阶函数与装饰器函数的深入讲解
2020/11/10 Python
python之pygame模块实现飞机大战完整代码
2020/11/29 Python
python3中for循环踩过的坑记录
2020/12/14 Python
html5文字阴影效果text-shadow使用示例
2013/07/25 HTML / CSS
印度最好的在线药品订购网站:PharmEasy
2018/11/30 全球购物
试述DBMS的主要功能
2016/11/13 面试题
ruby如何进行集成操作?Ruby能进行多重继承吗?
2013/10/16 面试题
护理专业学生职业生涯规划范文
2014/03/11 职场文书
公共场所禁烟倡议书
2014/08/30 职场文书
群众对十八届四中全会的期盼
2014/10/17 职场文书
2014年监理个人工作总结
2014/12/11 职场文书
英文商务邀请函范文
2015/01/31 职场文书
2019学生会干事辞职信
2019/06/27 职场文书
理解python中装饰器的作用
2021/07/21 Python