Python网络爬虫与信息提取(实例讲解)


Posted in Python onAugust 29, 2017

课程体系结构:

1、Requests框架:自动爬取HTML页面与自动网络请求提交

2、robots.txt:网络爬虫排除标准

3、BeautifulSoup框架:解析HTML页面

4、Re框架:正则框架,提取页面关键信息

5、Scrapy框架:网络爬虫原理介绍,专业爬虫框架介绍

理念:The Website is the API ...

Python语言常用的IDE工具

文本工具类IDE:

IDLE、Notepad++、Sublime Text、Vim & Emacs、Atom、Komodo Edit

集成工具IDE:

PyCharm、Wing、PyDev & Eclipse、Visual Studio、Anaconda & Spyder、Canopy

·IDLE是Python自带的默认的常用的入门级编写工具,它包含交互式文件式两种方式。适用于较短的程序。

·Sublime Text是专为程序员开发的第三方专用编程工具,可以提高编程体验,具有多种编程风格。

·Wing是Wingware公司提供的收费IDE,调试功能丰富,具有版本控制,版本同步功能,适合于多人共同开发。适用于编写大型程序。

·Visual Studio是微软公司维护的,可以通过配置PTVS编写Python,主要以Windows环境为主,调试功能丰富。

·Eclipse是一款开源的IDE开发工具,可以通过配置PyDev来编写Python,但是配置过程复杂,需要有一定的开发经验。

·PyCharm分为社区版和专业版,社区版免费,具有简单、集成度高的特点,适用于编写较复杂的工程。

适用于科学计算、数据分析的IDE:

·Canopy是由Enthought公司维护的收费工具,支持近500个第三方库,适合科学计算领域应用开发。

·Anaconda是开源免费的,支持近800个第三方库。

Requests库入门

Requests的安装:

Requests库是目前公认的爬取网页最好的Python第三方库,具有简单、简捷的特点。

官方网站:http://www.python-requests.org

在"C:\Windows\System32"中找到"cmd.exe",使用管理员身份运行,在命令行中输入:“pip install requests”运行。

Python网络爬虫与信息提取(实例讲解)

使用IDLE测试Requests库:

>>> import requests
>>> r = requests.get("http://www.baidu.com")#抓取百度页面
>>> r.status_code
>>> r.encoding = 'utf-8'
>>> r.text

Requests库的7个主要方法

方法 说明
requests.request() 构造一个请求,支撑以下各方法的基础方法
requests.get() 获取HTML网页的主要方法,对应于HTTP的GET
requests.head() 获取HTML网页头信息的方法,对应于HTTP的HEAD
requests.post() 向HTML网页提交POST请求的方法,对应于HTTP的POST
requests.put() 向HTML网页提交PUT请求的方法,对应于HTTP的PUT
requests.patch() 向HTML网页提交局部修改请求,对应于HTTP的PATCH
requests.delete() 向HTML页面提交删除请求,对应于HTTP的DELET

详细信息参考 Requests库 API文档:http://www.python-requests.org/en/master/api/

get()方法

r = requests.get(url)

get()方法构造一个向服务器请求资源的Request对象,返回一个包含服务器资源的Response对象。

requests.get(url, params=None, **kwargs)

url:拟获取页面的url链接

params:url中的额外参数,字典或字节流格式,可选

**kwargs:12个控制访问参数

Requests库的2个重要对象

· Request

· Response:Response对象包含爬虫返回的内容

Response对象的属性

r.status_code :HTTP请求的返回状态,200表示连接成功,404表示失败

r.text :HTTP响应内容的字符串形式,即,url对应的页面内容

r.encoding : 从HTTP header中猜测的相应内容编码方式 

r.apparent_encoding : 从内容中分析出的相应内容编码方式(备选编码方式)

r.content : HTTP响应内容的二进制形式

r.encoding :如果header中不存在charset,则认为编码为ISO-8859-1 。

r.apparent_encoding :根据网页内容分析出的编码方式可以 看作是r.encoding的备选。

Response的编码:

r.encoding : 从HTTP header中猜测的响应内容的编码方式;如果header中不存在charset,则认为编码为ISO-8859-1,r.text根据r.encoding显示网页内容

r.apparent_encoding : 根据网页内容分析出的编码方式,可以看作r.encoding的备选

爬取网页的通用代码框架

Requests库的异常

异常 说明
requests.ConnectionError 网络连接错误异常,如DNS查询失败拒绝连接等
requests.HTTPError HTTP错误异常
requests.URLRequired URL缺失异常
requests.ToolManyRedirects 超过最大重定向次数,产生重定向异常
requests.ConnectTimeout 连接远程服务器超时异常
requests.Timeout 请求URL超时,尝试超时异常

Response的异常

r.raise_for_status() : 如果不是200,产生异常requests.HTTPError;

在方法内部判断r.status_code是否等于200,不需要增加额外的if语句,该语句便于利用try-except进行异常处理

import requests

def getHTMLText(url):
try:


r = requests.get(url, timeout=30)


r.raise_for_status() # 如果状态不是200,引发HTTPError异常


r.encoding = r.apparent_encoding


return r.text

except: 


return "产生异常"

if __name__ == "__main__":

url = "http://www.baidu.com"

print(getHTMLText(url))

通用代码框架,可以使用户爬取网页变得更有效,更稳定、可靠。

HTTP协议

HTTP,Hypertext Transfer Protocol,超文本传输协议。

HTTP是一个基于“请求与响应”模式的、无状态的应用层协议。

HTTP协议采用URL作为定位网络资源的标识。

URL格式:http://host[:port][path]

· host:合法的Internet主机域名或IP地址
· port:端口号,缺省端口号为80
· path:请求资源的路径

HTTP URL的理解:

URL是通过HTTP协议存取资源的Internet路径,一个URL对应一个数据资源。

HTTP协议对资源的操作

方法 说明
GET 请求获取URL位置的资源
HEAD 请求获取URL位置资源的响应消息报告,即获得该资源的头部信息
POST 请求向URL位置的资源后附加新的数据
PUT 请求向URL位置存储一个资源,覆盖原URL位置资源
PATCH 请求局部更新URL位置的资源,即改变该处资源的部分内容
DELETE 请求删除URL位置存储的资源

理解PATCH和PUT的区别

假设URL位置有一组数据UserInfo,包括UserID、UserName等20个字段。

需求:用户修改了UserName,其他不变。

· 采用PATCH,仅向URL提交UserName的局部更新请求。

· 采用PUT,必须将所有20个字段一并提交到URL,未提交字段被删除。

PATCH的主要好处:节省网络带宽

Requests库主要方法解析

requests.request(method, url, **kwargs)

· method:请求方式,对应get/put/post等7种

例: r = requests.request('OPTIONS', url, **kwargs)

· url:拟获取页面的url链接

· **kwargs:控制访问的参数,共13个,均为可选项

params:字典或字节序列,作为参数增加到url中;

kv = {'key1':'value1', 'key2':'value2'}
r = requests.request('GET', 'http://python123.io/ws',params=kv)
print(r.url)
'''
http://python123.io/ws?key1=value1&key2=value2
'''

data:字典、字节序列或文件对象,作为Request的内容;

json:JSON格式的数据,作为Request的内容;

headers:字典,HTTP定制头;

hd = {'user-agent':'Chrome/10'}

r = requests.request('POST','http://www.yanlei.shop',headers=hd)

cookies:字典或CookieJar,Request中的cookie;

auth:元组,支持HTTP认证功能;

files:字典类型,传输文件;

fs = {'file':open('data.xls', 'rb')}

r = requests.request('POST','http://python123.io/ws',files=fs)

timeout:设定超时时间,秒为单位;

proxies:字典类型,设定访问代理服务器,可以增加登录认证

allow_redirects:True/False,默认为True,重定向开关;

stream:True/False,默认为True,获取内容立即下载开关;

verify:True/False,默认为True,认证SSL证书开关;

cert:本地SSL证书路径

#方法及参数
requests.get(url, params=None, **kwargs)
requests.head(url, **kwargs)
requests.post(url, data=None, json=None, **kwargs)
requests.put(url, data=None, **kwargs)
requests.patch(url, data=None, **kwargs)
requests.delete(url, **kwargs)

Python网络爬虫与信息提取(实例讲解)

网络爬虫引发的问题

性能骚扰:

受限于编写水平和目的,网络爬虫将会为web服务器带来巨大的资源开销

法律风险:

服务器上的数据有产权归属,网路爬虫获取数据后牟利将带来法律风险。

隐私泄露:

网络爬虫可能具备突破简单访问控制的能力,获得被保护数据从而泄露个人隐私。

网络爬虫的限制

·来源审查:判断User-Agent进行限制

检查来访HTTP协议头的User-Agent域,值响应浏览器或友好爬虫的访问。

· 发布公告:Roots协议

告知所有爬虫网站的爬取策咯,要求爬虫遵守。

Robots协议

Robots Exclusion Standard 网络爬虫排除标准

作用:网站告知网络爬虫哪些页面可以抓取,哪些不行。

形式:在网站根目录下的robots.txt文件。

案例:京东的Robots协议

http://www.jd.com/robots.txt

# 注释:*代表所有,/代表根目录
User-agent: * 
Disallow: /?* 
Disallow: /pop/*.html 
Disallow: /pinpai/*.html?* 
User-agent: EtaoSpider 
Disallow: / 
User-agent: HuihuiSpider 
Disallow: / 
User-agent: GwdangSpider 
Disallow: / 
User-agent: WochachaSpider 
Disallow: /

Robots协议的使用

网络爬虫:自动或人工识别robots.txt,再进行内容爬取。

Python网络爬虫与信息提取(实例讲解)

约束性:Robots协议是建议但非约束性,网络爬虫可以不遵守,但存在法律风险。

Requests库网络爬虫实战

1、京东商品

import requests
url = "https://item.jd.com/5145492.html"
try:
 r = requests.get(url)
 r.raise_for_status()
 r.encoding = r.apparent_encoding
 print(r.text[:1000])
except:
 print("爬取失败")

2、亚马逊商品

# 直接爬取亚马逊商品是会被拒绝访问,所以需要添加'user-agent'字段
import requests
url = "https://www.amazon.cn/gp/product/B01M8L5Z3Y"
try:
 kv = {'user-agent':'Mozilla/5.0'} # 使用代理访问
 r = requests.get(url, headers = kv)
 r.raise_for_status()
 r.encoding = r.apparent_encoding
 print(t.text[1000:2000])
except:
 print("爬取失败")

3、百度/360搜索关键词提交

搜索引擎关键词提交接口

· 百度的关键词接口:

http://www.baidu.com/s?wd=keyword

· 360的关键词接口:

http://www.so.com/s?q=keyword

# 百度
import requests
keyword = "Python"
try:
 kv = {'wd':keyword}
 r = requests.get("http://www.baidu.com/s",params=kv)
 print(r.request.url)
 r.raise_for_status()
 print(len(r.text))
except:
 print("爬取失败")
# 360
import requests
keyword = "Python"
try:
 kv = {'q':keyword}
 r = requests.get("http://www.so.com/s",params=kv)
 print(r.request.url)
 r.raise_for_status()
 print(len(r.text))
except:
 print("爬取失败")

4、网络图片的爬取和存储

网络图片链接的格式:

http://www.example.com/picture.jpg

国家地理:

http://www.nationalgeographic.com.cn/

选择一张图片链接:

http://image.nationalgeographic.com.cn/2017/0704/20170704030835566.jpg

图片爬取全代码
import requests
import os
url = "http://image.nationalgeographic.com.cn/2017/0704/20170704030835566.jpg"
root = "D://pics//"
path = root + url.split('/')[-1]
try:
 if not os.path.exists(root):
  os.mkdir(root)
 if not os.path.exists(path):
  r = requests.get(url)
  with open(path,'wb') as f:
   f.write(r.content)
   f.close()
   print("文件保存成功")
 else:
  print("文件已存在")
except:
 print("爬取失败")

5、IP地址归属地的自动查询

www.ip138.com IP查询

http://ip138.com/ips138.asp?ip=ipaddress

http://m.ip138.com/ip.asp?ip=ipaddress

import requests
url = "http://m.ip138.com/ip.asp?ip="
ip = "220.204.80.112"
try:
 r = requests.get(url + ip)
 r.raise_for_status()
 r.encoding = r.apparent_encoding
 print(r.text[1900:])
except:
 print("爬取失败")
# 使用IDLE
>>> import requests
>>> url ="http://m.ip138.com/ip.asp?ip="
>>> ip = "220.204.80.112"
>>> r = requests.get(url + ip)
>>> r.status_code
>>> r.text

以上这篇Python网络爬虫与信息提取(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中的一些类型转换函数小结
Feb 10 Python
python使用rabbitmq实现网络爬虫示例
Feb 20 Python
Python中让MySQL查询结果返回字典类型的方法
Aug 22 Python
python逐行读写txt文件的实例讲解
Apr 03 Python
Python异常处理操作实例详解
Aug 28 Python
python 利用for循环 保存多个图像或者文件的实例
Nov 09 Python
python2和python3的输入和输出区别介绍
Nov 20 Python
python爬虫 猫眼电影和电影天堂数据csv和mysql存储过程解析
Sep 05 Python
python 解决flask uwsgi 获取不到全局变量的问题
Dec 22 Python
python 常用日期处理-- datetime 模块的使用
Sep 02 Python
详解python tkinter 图片插入问题
Sep 03 Python
python - timeit 时间模块
Apr 06 Python
Python开发的HTTP库requests详解
Aug 29 #Python
Python实现按学生年龄排序的实际问题详解
Aug 29 #Python
详解Python进程间通信之命名管道
Aug 28 #Python
基于Python闭包及其作用域详解
Aug 28 #Python
利用Python查看目录中的文件示例详解
Aug 28 #Python
Python如何通过subprocess调用adb命令详解
Aug 27 #Python
Python中序列的修改、散列与切片详解
Aug 27 #Python
You might like
发布一个用PHP fsockopen写的HTTP下载的类
2007/02/22 PHP
php模拟用户自动在qq空间发表文章的方法
2015/01/07 PHP
PHP读取mssql json数据中文乱码的解决办法
2016/04/11 PHP
PHP利用Socket获取网站的SSL证书与公钥
2017/06/18 PHP
CakePHP框架Model函数定义方法示例
2017/08/04 PHP
浅谈PHP封装CURL
2019/03/06 PHP
PHP生成二维码与识别二维码的方法详解【附源码下载】
2019/03/07 PHP
js 浮动层菜单收藏
2009/01/16 Javascript
Javascript 代码也可以变得优美的实现方法
2009/06/22 Javascript
利用jQuery的deferred对象实现异步按顺序加载JS文件
2013/03/17 Javascript
JS鼠标滑过图片时切换图片实现思路
2013/09/12 Javascript
HTML页面弹出居中可拖拽的自定义窗口层
2014/05/07 Javascript
jquery提示效果实例分析
2014/11/25 Javascript
js中键盘事件实例简析
2015/01/10 Javascript
JavaScript过滤字符串中的中文与空格方法汇总
2016/03/07 Javascript
jQuery中DOM节点删除之empty与remove
2017/01/20 Javascript
限时抢购-倒计时的完整实例(分享)
2017/09/17 Javascript
Vue.js与 ASP.NET Core 服务端渲染功能整合
2017/11/16 Javascript
easyui下拉框动态级联加载的示例代码
2017/11/29 Javascript
element el-tree组件的动态加载、新增、更新节点的实现
2020/02/27 Javascript
vue项目中使用多选框的实例代码
2020/07/22 Javascript
[03:01]2014DOTA2国际邀请赛 小组赛7月13日TOPPLAY
2014/07/14 DOTA
[04:26]DOTA2上海特锦赛小组赛第二日 TOP10精彩集锦
2016/02/27 DOTA
[36:52]DOTA2真视界:基辅特锦赛总决赛
2017/05/21 DOTA
提升Python程序运行效率的6个方法
2015/03/31 Python
python正则表达式之作业计算器
2016/03/18 Python
Python中的浮点数原理与运算分析
2017/10/12 Python
python机器学习案例教程——K最近邻算法的实现
2017/12/28 Python
Python爬取破解无线网络wifi密码过程解析
2019/09/17 Python
CSS3实现银灰色动画效果的导航菜单代码
2015/09/01 HTML / CSS
使用jTopo给Html5 Canva中绘制的元素添加鼠标事件
2014/05/15 HTML / CSS
荷叶圆圆教学反思
2014/02/01 职场文书
大学生实习推荐信
2015/03/27 职场文书
大学生入党自传2015
2015/06/26 职场文书
2016大学迎新晚会开场白
2015/11/24 职场文书
解决WINDOWS电脑开机后桌面没有任何图标
2022/04/09 数码科技