详解NumPy中的线性关系与数据修剪压缩


Posted in Python onMay 25, 2022

摘要

总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的。作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出。

前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如

详解NumPy中的线性关系与数据修剪压缩

详解NumPy中的线性关系与数据修剪压缩

都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个股价等于之前的股价与各自的系数相乘后再做加和的结果,但是,这些系数是需要我们来确定的,也即一个线性相关的权重。

一、用线性模型预测价格

创建步骤如下:

1)先获取一个包含N个收盘价的向量(数组): 

N=10
#N=len(close)
new_close = close[-N:]
new_closes= new_close[::-1]
print (new_closes)

 运行结果:

[39.96 38.03 38.5  38.6  36.89 37.15 36.61 37.21 36.98 36.47]

2)初始化一个N×N的二维数组 A ,元素全部为 0

A = np.zeros((N, N), float)
print ("Zeros N by N", A)

3)用数组new_closes的股价填充数组A

for i in range(N):
    A[i,] = close[-N-i-1: -1-i]
print( "A", A)

试一下运行结果,并观察填充后的数组A

详解NumPy中的线性关系与数据修剪压缩

4)选取合适的权重

Weights [0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]和The weights : [0.2 0.2 0.2 0.2 0.2]哪一种权重更合理?用线性代数的术语来说,就是解一个最小二乘法的问题。

要确定线性模型中的权重系数,就是解决最小平方和的问题,可以使用 linalg包中的 lstsq 函数来完成这个任务

(x, residuals, rank, s) = np.linalg.lstsq(A,new_closes)

其中,x是由A,new_closes通过np.linalg.lstsq()函数,即生成的权重(向量),residuals为残差数组、rank为A的秩、s为A的奇异值。

5)预测股价,用NumPy中的 dot()函数计算系数向量与最近N个价格构成的向量的点积(dot product),这个点积就是向量new_closes中价格的线性组合,系数由向量 x 提供

print( np.dot(new_closes, x))

完整代码如下:

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt

def datestr2num(s): #定义一个函数
    return datetime.strptime(s.decode('ascii'),"%Y-%m-%d").date().weekday()

dates, opens, high, low, close,vol=np.loadtxt('data.csv',delimiter=',', usecols=(1,2,3,4,5,6),
                       converters={1:datestr2num},unpack=True)

N=10
#N=len(close)
new_close = close[-N:]
new_closes= new_close[::-1]

A = np.zeros((N, N), float)

for i in range(N):
    A[i,] = close[-N-i-1: -1-i]
    
print( "A", A)

(x, residuals, rank, s) = np.linalg.lstsq(A,new_closes)
print(x) #权重系数向量 

print('\n')
print(residuals)  #残差数组
print('\n')
print(rank) #A的秩
print(s)
print('\n')#奇异值
print( np.dot(new_closes, x))

运行结果如下:

详解NumPy中的线性关系与数据修剪压缩

二、趋势线 

趋势线,是根据股价走势图上很多所谓的枢轴点绘成的曲线。描绘价格变化的趋势。可以让计算机来用非常简易的方法来绘制趋势线

(1) 确定枢轴点的位置。假定枢轴点位置 为最高价、最低价和收盘价的算术平均值。pivots = (high + low + close ) / 3

从枢轴点出发,可以推导出股价所谓的阻力位和支撑位。阻力位是指股价上升时遇到阻力,在转跌前的最高价格;支撑位是指股价下跌时遇到支撑,在反弹前的最低价格(阻力位和支撑位并非客观存在,它们只是一个估计量)。基于这些估计量,就可以绘制出阻力位和支撑位的趋势线。我们定义当日股价区间为最高价与最低价之差

 (2) 定义一个函数用直线 y= at + b 来拟合数据,该函数应返回系数 a 和 b,再次用到 linalg 包中的 lstsq 函数。将直线方程重写为 y = Ax 的形式,其中 A = [t 1] , x = [a b] 。使用 ones_like 和 vstack 函数来构造数组 A

 numpy.ones_like(a, dtype=None, order='K', subok=True) 返回与指定数组具有相同形状和数据类型的数组,并且数组中的值都为1。

numpy.vstack(tup)     [source]  垂直(行)按顺序堆叠数组。  这等效于形状(N,)的1-D数组已重塑为(1,N)后沿第一轴进行concatenation。 重建除以vsplit的数组。如下两小例:

>>> a = np.array([1, 2, 3]) 
>>> b = np.array([2, 3, 4]) 
>>> np.vstack((a,b)) 
array([[1, 2, 3],        
       [2, 3, 4]])
>>> a = np.array([[1], [2], [3]]) 
>>> b = np.array([[2], [3], [4]]) 
>>> np.vstack((a,b)) 
array([[1],
       [2],   
       [3], 
       [2],
       [3], 
       [4]])

 完整代码如下:

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt

def datestr2num(s): #定义一个函数
    return datetime.strptime(s.decode('ascii'),"%Y-%m-%d").date().weekday()

dates, opens, high, low, close,vol=np.loadtxt('data.csv',delimiter=',', usecols=(1,2,3,4,5,6),
                       converters={1:datestr2num},unpack=True)
"""
N=10
#N=len(close)
new_close = close[-N:]
new_closes= new_close[::-1]


A = np.zeros((N, N), float)

for i in range(N):
    A[i,] = close[-N-i-1: -1-i]
   
print( "A", A)
(x, residuals, rank, s) = np.linalg.lstsq(A,new_closes)
print(x) #权重系数向量 
print(residuals)  #残差数组
print(rank) #A的秩
print(s)
print( np.dot(new_closes, x))
"""
pivots = (high + low + close ) / 3

def fit_line(t, y):
    A = np.vstack([t, np.ones_like(t)]).T
# np.ones_like(t) 即定义一个像t一样,有相同形状和数据类型的数组,并且数组中的值都为1 
    return np.linalg.lstsq(A, y)[0]

t = np.arange(len( close)) #按close数列创建一个数列t

sa, sb = fit_line(t, pivots - (high - low)) #用直线y=at+b来拟合数据,该函数应返回系数a(sa) 和 b(sb)
ra, rb = fit_line(t, pivots + (high - low))
support = sa * t + sb     #计算支撑线数列
resistance = ra * t + rb  #计算阻力线数列

condition = (close > support) & (close < resistance)#设置一个判断数据点是否位于趋势线之间的条件,作为 where 函数的参数
between_bands = np.where(condition)

plt.plot(t, close,color='r')
plt.plot(t, support,color='g')
plt.plot(t, resistance,color='y')
plt.show()

运行结果:

详解NumPy中的线性关系与数据修剪压缩

三、数组的修剪和压缩

NumPy中的 ndarray 类定义了许多方法,可以对象上直接调用。通常情况下,这些方法会返回一个数组。

ndarray 对象的方法相当多,像前面遇到的 var 、 sum 、 std 、 argmax 、argmin 以及 mean 函数也均为 ndarray 方法。下面介绍一下数组的修前与压缩。

1、  clip 方法返回一个修剪过的数组:将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值

a = np.arange(10)
print("a =", a)
print("Clipped", a.clip(3, 7))

运行结果:

a = [0 1 2 3 4 5 6 7 8 9]
Clipped [3 3 3 3 4 5 6 7 7 7]

很明显,a.clip(3,7)将数组a中的小于3的设置为3,大于7的全部设置为7.

2、 compress 方法返回一个根据给定条件筛选后的数组

b = np.arange(10)
print (a)
print ("Compressed", a.compress(a >3))

运行结果:

[0 1 2 3 4 5 6 7 8 9]
Compressed [4 5 6 7 8 9]

四、阶乘

 prod() 方法,可以计算数组中所有元素的乘积.

c = np.arange(1,5)
print("b =", c)
print("Factorial", c.prod())

运行结果:

b = [1 2 3 4]
Factorial 24

如果想知道1~8的所有阶乘值,调用 cumprod()方法,计算数组元素的累积乘积。

print( "Factorials", c.cumprod())

运行结果:

Factorials [  1   2   6  24 120]

详解NumPy中的线性关系与数据修剪压缩

本篇主要介绍了一个通过现在有数据,用函数 y= at + b 来拟合数据进行线性拟合后,用 linalg包中的 lstsq 函数来完成最小二乘相关后,预测股价的实例,来了解了一些numpy的函数及作用;同时介绍了数据修剪及压缩和阶乘的计算。

以上就是详解NumPy中的线性关系与数据修剪压缩的详细内容!


Tags in this post...

Python 相关文章推荐
python中 ? : 三元表达式的使用介绍
Oct 09 Python
Python NumPy库安装使用笔记
May 18 Python
Python判断文件或文件夹是否存在的三种方法
Jul 27 Python
python命令行解析之parse_known_args()函数和parse_args()使用区别介绍
Jan 24 Python
解决python删除文件的权限错误问题
Apr 24 Python
使用Python 正则匹配两个特定字符之间的字符方法
Dec 24 Python
python re库的正则表达式入门学习教程
Mar 08 Python
使用python list 查找所有匹配元素的位置实例
Jun 11 Python
Python Tornado批量上传图片并显示功能
Mar 26 Python
python属于软件吗
Jun 18 Python
Python创建简单的神经网络实例讲解
Jan 04 Python
Python 带星号(* 或 **)的函数参数详解
Feb 23 Python
python实现双链表
May 25 #Python
Python实现双向链表
May 25 #Python
python区块链持久化和命令行接口实现简版
May 25 #Python
python区块链实现简版工作量证明
May 25 #Python
pycharm无法安装cv2模块问题
May 20 #Python
python中 Flask Web 表单的使用方法
May 20 #Python
Python OpenGL基本配置方式
May 20 #Python
You might like
树型结构列出指定目录里所有文件的PHP类
2006/10/09 PHP
PHP简单实现断点续传下载的方法
2015/09/25 PHP
Ubuntu server 11.04安装memcache及php使用memcache来存储session的方法
2016/05/31 PHP
php和js实现根据子网掩码和ip计算子网功能示例
2019/11/09 PHP
[原创]js获取数组任意个不重复的随机数组元素
2010/03/15 Javascript
jQuery 获取对象 定位子对象
2010/05/31 Javascript
Javascript基础知识(三)BOM,DOM总结
2014/09/29 Javascript
Javascript快速排序算法详解
2014/12/03 Javascript
jQuery幻灯片特效代码分享--鼠标滑过按钮时切换(2)
2020/11/18 Javascript
Bootstrap实现带暂停功能的轮播组件(推荐)
2016/11/25 Javascript
半个小时学json(json传递示例)
2016/12/25 Javascript
AngularJS 霸道的过滤器小结
2017/04/26 Javascript
VUE实现表单元素双向绑定(总结)
2017/08/08 Javascript
jquery 一键复制到剪切板的实例
2017/09/20 jQuery
集成vue到jquery/bootstrap项目的方法
2018/02/10 jQuery
js根据json数据中的某一个属性来给数据分组的方法
2018/10/08 Javascript
微信小程序使用map组件实现获取定位城市天气或者指定城市天气数据功能
2019/01/22 Javascript
用vue 实现手机触屏滑动功能
2020/05/28 Javascript
小程序组件传值和引入sass的方法(使用vant Weapp组件库)
2020/11/24 Javascript
[35:39]完美世界DOTA2联赛PWL S2 FTD.C vs Rebirth 第二场 11.22
2020/11/24 DOTA
[01:00:22]DOTA2-DPC中国联赛定级赛 LBZS vs Magma BO3第三场 1月10日
2021/03/11 DOTA
Python内置函数reversed()用法分析
2018/03/20 Python
selenium3+python3环境搭建教程图解
2018/12/07 Python
python实现将两个文件夹合并至另一个文件夹(制作数据集)
2020/04/03 Python
利用CSS3实现文字折纸效果实例代码
2018/07/10 HTML / CSS
HTML5 Canvas概述
2009/08/26 HTML / CSS
HTML5中外部浏览器唤起微信分享功能的代码
2020/09/15 HTML / CSS
我们是伦敦女孩:WalG
2018/01/08 全球购物
2014年煤矿工作总结
2014/11/24 职场文书
婚礼新人答谢词
2015/01/04 职场文书
2015年老干部工作总结
2015/04/23 职场文书
2015年禁毒工作总结
2015/04/30 职场文书
小孩不笨观后感
2015/06/03 职场文书
团委副书记工作总结
2015/08/14 职场文书
周末问候语大全
2015/11/10 职场文书
送给客户微信问候语!
2019/07/04 职场文书