python区块链实现简版工作量证明


Posted in Python onMay 25, 2022

说明

本文根据https://github.com/liuchengxu/blockchain-tutorial的内容,用python实现的,但根据个人的理解进行了一些修改,大量引用了原文的内容。文章末尾有"本节完整源码实现地址"。

回顾

上一节,我们构造了一个非常简单的数据结构 – 区块,它也是整个区块链数据库的核心。目前所完成的区块链原型,已经可以通过链式关系把区块相互关联起来:每个块都与前一个块相关联。

但是,当前实现的区块链有一个巨大的缺陷:向链中加入区块太容易,也太廉价了。而区块链和比特币的其中一个核心就是,要想加入新的区块,必须先完成一些非常困难的工作。在本文,我们将会弥补这个缺陷。

工作量证明

区块链的一个关键点就是,一个人必须经过一系列困难的工作,才能将数据放入到区块链中。正是由于这种困难的工作,才保证了区块链的安全和一致。此外,完成这个工作的人,也会获得相应奖励(这也就是通过挖矿获得币)。

这个机制与生活现象非常类似:一个人必须通过努力工作,才能够获得回报或者奖励,用以支撑他们的生活。在区块链中,是通过网络中的参与者(矿工)不断的工作来支撑起了整个网络。矿工不断地向区块链中加入新块,然后获得相应的奖励。在这种机制的作用下,新生成的区块能够被安全地加入到区块链中,它维护了整个区块链数据库的稳定性。值得注意的是,完成了这个工作的人必须要证明这一点,即他必须要证明他的确完成了这些工作。

整个 “努力工作并进行证明” 的机制,就叫做工作量证明(proof-of-work)。要想完成工作非常地不容易,因为这需要大量的计算能力:即便是高性能计算机,也无法在短时间内快速完成。另外,这个工作的困难度会随着时间不断增长,以保持每 10 分钟出 1 个新块的速度。在比特币中,这个工作就是找到一个块的哈希,同时这个哈希满足了一些必要条件。这个哈希,也就充当了证明的角色。因此,寻求证明(寻找有效哈希),就是矿工实际要做的事情。

哈希计算

获得指定数据的一个哈希值的过程,就叫做哈希计算。一个哈希,就是对所计算数据的一个唯一表示。对于一个哈希函数,输入任意大小的数据,它会输出一个固定大小的哈希值。下面是哈希的几个关键特性:

  • 无法从一个哈希值恢复原始数据。也就是说,哈希并不是加密。
  • 对于特定的数据,只能有一个哈希,并且这个哈希是唯一的。
  • 即使是仅仅改变输入数据中的一个字节,也会导致输出一个完全不同的哈希。

本质上哈希是一个摘要算法。

哈希函数被广泛用于检测数据的一致性。软件提供者常常在除了提供软件包以外,还会发布校验和。当下载完一个文件以后,你可以用哈希函数对下载好的文件计算一个哈希,并与作者提供的哈希进行比较,以此来保证文件下载的完整性。

在区块链中,哈希被用于保证一个块的一致性。哈希算法的输入数据包含了前一个块的哈希,因此使得不太可能(或者,至少很困难)去修改链中的一个块:因为如果一个人想要修改前面一个块的哈希,那么他必须要重新计算这个块以及后面所有块的哈希。

Hashcash

比特币使用 Hashcash ,一个最初用来防止垃圾邮件的工作量证明算法。它可以被分解为以下步骤:

取一些公开的数据(比如,如果是 email 的话,它可以是接收者的邮件地址;在比特币中,它是区块头)

给这个公开数据添加一个计数器。计数器默认从 0 开始

将 data(数据) 和 counter(计数器) 组合到一起,获得一个哈希

检查哈希是否符合一定的条件:

  • 如果符合条件,结束
  • 如果不符合,增加计数器,重复步骤 3-4

因此,这是一个暴力算法:改变计数器,计算新的哈希,检查,增加计数器,计算哈希,检查,如此往复。这也是为什么说它的计算成本很高,因为这一步需要如此反复不断地计算和检查。

现在,让我们来仔细看一下一个哈希要满足的必要条件。在原始的 Hashcash 实现中,它的要求是 “一个哈希的前 20 位必须是 0”。在比特币中,这个要求会随着时间而不断变化。因为按照设计,必须保证每 10 分钟生成一个块,而不论计算能力会随着时间增长,或者是会有越来越多的矿工进入网络,所以需要动态调整这个必要条件。

为了阐释这一算法,我从前一个例子(“I like donuts”)中取得数据,并且找到了一个前 3 个字节是全是 0 的哈希。

实现

这里我们实现一个简易的区块链,就不动态调节难度了,使用固定的难度。

class ProofOfWork(object):
    """
    pow 
    """
    _N_BITS = 16
    MAX_BITS = 256
    MAX_SIZE = sys.maxsize
    def __init__(self, block, n_bits=_N_BITS):
        self._n_bits = n_bits
        self._target_bits = 1 << (self.MAX_BITS - n_bits)
        self._block = block

这里的_n_bits就是难度值。 在比特币中,当一个块被挖出来以后,“n_bits” 代表了区块头里存储的难度,也就是开头有多少个 0。这里的 16 指的是算出来的哈希前 16 位必须是 0,如果用 16 进制表示,就是前 6 位必须是 0,这一点从最后的输出可以看出来。目前我们并不会实现一个动态调整目标的算法,所以将难度定义为一个全局的常量即可。

16 其实是一个可以任意取的数字,其目的只是为了有一个目标而已,这个目标占据不到 256 位的内存空间。同时,我们想要有足够的差异性,但是又不至于大的过分,因为差异性越大,就越难找到一个合适的哈希。这里的
_target_bits则表示满足要求的最大值,即一个上界,它是由1左移256-n_bits位来的。计算出来的哈希只要满足小于它就满足条件了。

接下来我们要准备用于计算哈希的数据:

def _prepare_data(self, nonce):
        data_lst = [str(self._block.block_header.prev_block_hash),
                    str(self._block.block_header.hash_merkle_root),
                    str(self._block.block_header.timestamp),
                    str(self._block.block_header.height),
                    str(nonce)]
        return utils.encode(''.join(data_lst))

nonce就是我们要不断尝试要寻找的值,就是上面 Hashcash 所提到的计数器,它是一个密码学术语。其他数据都是区块头的数据。我们需要把这些数据进行合并作为计算哈希的原数据。

寻找nonce的方法:

def run(self):
        nonce = 0
        found = False
        hash_hex = None
        print('Mining a new block')
        while nonce < self.MAX_SIZE:
            data = self._prepare_data(nonce)
            hash_hex = utils.sum256_hex(data)
            hash_val = int(hash_hex, 16)
            sys.stdout.write("try nonce == %d hash_hex == %s \r" % (nonce, hash_hex))
            if (hash_val < self._target_bits):
                found = True
                break
            nonce += 1
        if found: 
            print('Found nonce == %d' % nonce)
        else:
            print('Not Found nonce')
            raise NonceNotFoundError('nonce not found')
        return nonce, hash_hex

为防止溢出,我们要设定一个上线为int64的上限。然后我们不断循环寻找目标值,直到满足难度要求。当然,如果难度设计得过高,有可能寻找不到,所以也需要判断一下。所以我们再循环内做了一下事:

1. 准备数据

2. 用 SHA-256 对数据进行哈希

3. 将哈希转换成一个大整数

4. 将这个大整数与目标进行比较

然后我们还需要很方便的去检验这个块的难度值是否满足我们的要求:

def validate(self):
        """
        validate the block
        """
        data = self._prepare_data(self._block.block_header.nonce)
        hash_hex = utils.sum256_hex(data)
        hash_val = int(hash_hex, 16)
        return hash_val < self._target_bits

最后运行以前的main.py,结果如下:

Mining a new block
...
...
...
Block(_block_header=BlockHeader(timestamp='1548213145.24', hash_merkle_root='', prev_block_hash='', hash='00008fbcbe3a817641195652d9bad37fa8c974536f152f4bc575b3ead9dc6407', nonce=62489, height=0))Block(_block_header=BlockHeader(timestamp='1548213166.65', hash_merkle_root='', prev_block_hash='00008fbcbe3a817641195652d9bad37fa8c974536f152f4bc575b3ead9dc6407', hash='9e851f78295e7933cd9749f712d1f09f1408dff9bd37cc2f79f1c65d1ab39e2e', nonce=16184, height=1))Block(_block_header=BlockHeader(timestamp='1548213171.15', hash_merkle_root='', prev_block_hash='9e851f78295e7933cd9749f712d1f09f1408dff9bd37cc2f79f1c65d1ab39e2e', hash='f88e7a382dafc50b01c43cbbdbbdfa20ac2bffcf5ddf36b97439ff09203f8c2a', nonce=8286, height=2))

可以看到这次我们产生三个块花费了25秒多,比没有工作量证明之前慢了很多(也就是成本高了很多)。

参考:

[1] proof-of-work

[2] 完整源码

以上就是python区块链实现简版工作量证明的详细内容!


Tags in this post...

Python 相关文章推荐
Python实现Tab自动补全和历史命令管理的方法
Mar 12 Python
Python的Django框架中的数据库配置指南
Jul 17 Python
快速了解Python开发中的cookie及简单代码示例
Jan 17 Python
Python 实用技巧之利用Shell通配符做字符串匹配
Aug 23 Python
python脚本之一键移动自定格式文件方法实例
Sep 02 Python
python用线性回归预测股票价格的实现代码
Sep 04 Python
Python如何实现强制数据类型转换
Nov 22 Python
Django调用支付宝接口代码实例详解
Apr 04 Python
Tensorflow tf.tile()的用法实例分析
May 22 Python
Python Mock模块原理及使用方法详解
Jul 07 Python
用Python爬虫破解滑动验证码的案例解析
May 06 Python
Python中非常使用的6种基本变量的操作与技巧
Mar 22 Python
pycharm无法安装cv2模块问题
May 20 #Python
python中 Flask Web 表单的使用方法
May 20 #Python
Python OpenGL基本配置方式
May 20 #Python
Python面试不修改数组找出重复的数字
May 20 #Python
Python 中面向接口编程
May 20 #Python
人工智能深度学习OpenAI baselines的使用方法
May 20 #Python
baselines示例程序train_cartpole.py的ImportError
May 20 #Python
You might like
php内嵌函数用法实例
2015/03/20 PHP
PHP 中魔术常量的实例详解
2017/10/26 PHP
FormValidate 表单验证功能代码更新并提供下载
2008/08/23 Javascript
PNG背景在不同浏览器下的应用
2009/06/22 Javascript
Prototype Template对象 学习
2009/07/19 Javascript
jquery选择器需要注意的问题
2014/11/26 Javascript
日常收藏的jquery技巧
2015/12/02 Javascript
基于JavaScript代码实现pc与手机之间的跳转
2015/12/23 Javascript
Node.js查找当前目录下文件夹实例代码
2017/03/07 Javascript
Angular使用$http.jsonp发送跨站请求的方法
2017/03/16 Javascript
基于LayUI实现前端分页功能的方法
2017/07/22 Javascript
深入理解基于vue-cli的vuex配置
2017/07/24 Javascript
深入理解Vuex 模块化(module)
2017/09/26 Javascript
Angular实现下拉框模糊查询功能示例
2018/01/03 Javascript
Three.js 再探 - 写一个微信跳一跳极简版游戏
2018/01/04 Javascript
jQuery幻灯片插件owlcarousel参数说明中文文档
2018/02/27 jQuery
bootstrap select2插件用ajax来获取和显示数据的实例
2018/08/09 Javascript
详解如何实现Element树形控件Tree在懒加载模式下的动态更新
2019/04/25 Javascript
通过JS深度判断两个对象字段相同
2019/06/14 Javascript
vue实现数字动态翻牌的效果(开箱即用)
2019/12/08 Javascript
vue实现表格合并功能
2020/12/01 Vue.js
python插入排序算法的实现代码
2013/11/21 Python
Python random模块用法解析及简单示例
2017/12/18 Python
Flask 让jsonify返回的json串支持中文显示的方法
2018/03/26 Python
详解Python中的四种队列
2018/05/21 Python
python 列表输出重复值以及对应的角标方法
2019/06/11 Python
在keras下实现多个模型的融合方式
2020/05/23 Python
CSS Grid布局教程之浏览器开启CSS Grid Layout汇总
2014/12/30 HTML / CSS
PUMA澳大利亚官方网站:德国运动品牌
2018/10/19 全球购物
Opodo意大利:欧洲市场上领先的在线旅行社
2019/10/24 全球购物
同步和异步有何异同,在什么情况下分别使用他们?举例说明
2014/02/27 面试题
四风问题自查自纠工作情况报告
2014/10/28 职场文书
2014年档案管理工作总结
2014/11/17 职场文书
2014年艾滋病防治工作总结
2014/12/10 职场文书
2014年应急工作总结
2014/12/11 职场文书
学雷锋团日活动总结
2015/05/06 职场文书