tensorflow+k-means聚类简单实现猫狗图像分类的方法


Posted in Python onApril 28, 2021

一、前言

本文使用的是 kaggle 猫狗大战的数据集:https://www.kaggle.com/c/dogs-vs-cats/data

tensorflow+k-means聚类简单实现猫狗图像分类的方法

训练集中有 25000 张图像,测试集中有 12500 张图像。作为简单示例,我们用不了那么多图像,随便抽取一小部分猫狗图像到一个文件夹里即可。

tensorflow+k-means聚类简单实现猫狗图像分类的方法

通过使用更大、更复杂的模型,可以获得更高的准确率,预训练模型是一个很好的选择,我们可以直接使用预训练模型来完成分类任务,因为预训练模型通常已经在大型的数据集上进行过训练,通常用于完成大型的图像分类任务。

tf.keras.applications中有一些预定义好的经典卷积神经网络结构(Application应用),如下所示:

tensorflow+k-means聚类简单实现猫狗图像分类的方法

我们可以直接调用这些经典的卷积神经网络结构(甚至载入预训练的参数),而无需手动来构建网络结构。

例如,本文将要用到的模型是由谷歌开发的 MobileNetV2 网络结构,该模型已经在 ImageNet 数据集上进行过预训练,共含有 1.4M 张图像,而且学习了常见的 1000 种物体的基本特征,因此,该模型具有强大的特征提取能力。

model = tf.keras.applications.MobileNetV2()

当执行以上代码时,TensorFlow会自动从网络上下载 MobileNetV2 网络结构,运行代码后需要等待一会会儿~~。MobileNetV2模型的速度很快,而且耗费资源也不是很多。

二、k-means聚类

k-means聚类算法以 k 为参数,把 n 个对象分成 k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。其处理过程如下:

  • 随机选择 k 个点作为初始的聚类中心
  • 对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
  • 对每个簇,计算所有点的均值作为新的聚类中心。
  • 重复步骤2、3直到聚类中心不再发生改变

tensorflow+k-means聚类简单实现猫狗图像分类的方法

k-means的算法原理比较非常简洁、易于理解,但是这里面有个问题需要解决:

如何确定 k 值?

  • 在 k-means 算法实现过程中,首先面临的问题就是如何确定好 K 值。因为在实际应用中,我们也不知道这些数据到底会有多少个类别,或者分为多少个类别会比较好,所以在选择 K 值的时候会比较困难,只能根据经验预设一个数值。
  • 比较常用的一个方法:肘部法。就是去循环尝试 K 值,计算在不同的 K 值情况下,所有数据的损失,即用每一个数据点到中心点的距离之和计算平均距离。可以想到,当 K=1 的时候,这个距离和肯定是最大的;当 K=m 的时候,每个点也是自己的中心点,这个时候全局的距离和是0,平均距离也是0,当然我们不可能设置成K=m。
  • 而在逐渐加大 K 的过程中,会有一个点,使这个平均距离发生急剧的变化,如果把这个距离与 K 的关系画出来,就可以看到一个拐点,也就是我们说的手肘。

tensorflow+k-means聚类简单实现猫狗图像分类的方法

要确定 K 值确实是一项比较费时费力的事情,但是也是 K-Means 聚类算法中必须要做好的工作。

三、图像分类

现在进入正题,实现我们的猫狗图像分类。

导入需要的依赖库

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import cv2 as cv
import os, shutil
from pathlib import Path

获取 animals 文件夹下所有 jpg 猫狗图像

# 获得该文件夹下所有jpg图片路径
p = Path(r"C:\Users\Administrator\DeepLearning\animals")
files = list(p.glob("**/*.jpg"))

opencv读取图像,并将图像大小 resize 为(224,224),以匹配模型输入层的大小以进行特征提取。图像数组转换为 float32 类型并reshape,然后做归一化。

# opencv读取图像 并resize为(224,224)
images = [cv.resize(cv.imread(str(file)), (224, 224)) for file in files]
paths = [file for file in files]
# 图像数组转换为float32类型并reshape  然后做归一化
images = np.array(np.float32(images).reshape(len(images), -1) / 255)

加载预训练模型 MobileNetV2 来实现图像分类

# 加载预先训练的模型MobileNetV2来实现图像分类
model = tf.keras.applications.MobileNetV2(include_top=False,
weights="imagenet", input_shape=(224, 224, 3))
predictions = model.predict(images.reshape(-1, 224, 224, 3))
pred_images = predictions.reshape(images.shape[0], -1)

k-means聚类算法

k = 2   # 2个类别
# K-Means聚类
kmodel = KMeans(n_clusters=k, n_jobs=-1, random_state=888)
kmodel.fit(pred_images)
kpredictions = kmodel.predict(pred_images)
print(kpredictions)   # 预测的类别
# 0:dog    1:cat

将分类后的图像保存到不同文件夹下

for i in ["cat", "dog"]:
    os.mkdir(r"C:\Users\Administrator\DeepLearning\picture_" + str(i))

# 复制文件,保留元数据 shutil.copy2('来源文件', '目标地址')
for i in range(len(paths)):
    if kpredictions[i] == 0:   
        shutil.copy2(paths[i], r"C:\Users\Administrator\DeepLearning\picture_dog")
    else:
        shutil.copy2(paths[i], r"C:\Users\Administrator\DeepLearning\picture_cat")

结果如下:

猫狗图像分类

推荐阅读:
https://keras-cn.readthedocs.io/en/latest/other/application/
https://www.freesion.com/article/6932673943/
https://mp.weixin.qq.com/s/64fgbm4QESz-irwY0uUYOA

到此这篇关于tensorflow+k-means聚类 简单实现猫狗图像分类的文章就介绍到这了,更多相关tensorflow实现猫狗图像分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 私有函数的实例详解
Sep 11 Python
Python实现调度算法代码详解
Dec 01 Python
python版学生管理系统
Jan 10 Python
Python使用win32com模块实现数据库表结构自动生成word表格的方法
Jul 17 Python
python re库的正则表达式入门学习教程
Mar 08 Python
Python TestCase中的断言方法介绍
May 02 Python
python实现月食效果实例代码
Jun 18 Python
Python将string转换到float的实例方法
Jul 29 Python
python numpy库np.percentile用法说明
Jun 08 Python
学python最电脑配置有要求么
Jul 05 Python
Python模拟键盘输入自动登录TGP
Nov 27 Python
教你怎么用python爬取爱奇艺热门电影
May 20 Python
python实现三阶魔方还原的示例代码
python基于opencv批量生成验证码的示例
python基于tkinter制作下班倒计时工具
Apr 28 #Python
Python爬虫之爬取哔哩哔哩热门视频排行榜
k-means & DBSCAN 总结
秀!学妹看见都惊呆的Python小招数!【详细语言特性使用技巧】
Apr 27 #Python
Python代码,能玩30多款童年游戏!这些有几个是你玩过的
You might like
php 变量定义方法
2009/06/14 PHP
php集成环境xampp中apache无法启动问题解决方案
2014/11/18 PHP
prototype与jquery下Ajax实现的差别
2009/09/13 Javascript
js中使用DOM复制(克隆)指定节点名数据到新的XML文件中的代码
2011/07/27 Javascript
fancybox modal的完美解决(右上的X)
2012/10/30 Javascript
jquery中map函数与each函数的区别实例介绍
2014/06/23 Javascript
json属性名为什么要双引号(个人猜测)
2014/07/31 Javascript
jQuery中:focus选择器用法实例
2014/12/30 Javascript
javascript性能优化之事件委托实例详解
2015/12/12 Javascript
基于BootStrap Metronic开发框架经验小结【四】Bootstrap图标的提取和利用
2016/05/12 Javascript
Vue2.5通过json文件读取数据的方法
2018/02/27 Javascript
Vue三层嵌套路由的示例代码
2018/05/05 Javascript
vue2.0 实现导航守卫的具体用法(路由守卫)
2018/05/17 Javascript
JavaScript解析JSON数据示例
2019/07/16 Javascript
React中使用Vditor自定义图片详解
2020/12/25 Javascript
[01:03:37]Secret vs VGJ.S Supermajor小组赛C组 BO3 第二场 6.3
2018/06/04 DOTA
[01:36]极致酷炫!TI9典藏宝瓶+撼地者至宝展示
2019/06/11 DOTA
[40:19]完美世界DOTA2联赛PWL S3 Rebirth vs CPG 第二场 12.18
2020/12/19 DOTA
在Python中使用M2Crypto模块实现AES加密的教程
2015/04/08 Python
Python2.x利用commands模块执行Linux shell命令
2016/03/11 Python
Python实现对一个函数应用多个装饰器的方法示例
2018/02/09 Python
Python创建一个空的dataframe,并循环赋值的方法
2018/11/08 Python
django 数据库 get_or_create函数返回值是tuple的问题
2020/05/15 Python
Python实现UDP程序通信过程图解
2020/05/15 Python
python opencv肤色检测的实现示例
2020/12/21 Python
CSS3的column-fill属性对齐列内容高度的用法详解
2016/07/01 HTML / CSS
HTML5 canvas实现雪花飘落特效
2016/03/08 HTML / CSS
详解HTML5常用的语义化标签
2019/09/27 HTML / CSS
巴西图书和电子产品购物网站:Saraiva
2017/06/07 全球购物
澳大利亚手表品牌:Time IV Change
2018/10/06 全球购物
土建施工员岗位职责
2014/07/16 职场文书
关于感恩的演讲稿200字
2014/08/26 职场文书
2015年服务员工作总结
2015/04/08 职场文书
LayUI+Shiro实现动态菜单并记住菜单收展的示例
2021/05/06 Javascript
SpringBoot2零基础到精通之数据与页面响应
2022/03/22 Java/Android
Selenium浏览器自动化如何上传文件
2022/04/06 Python