Python yield 使用方法浅析


Posted in Python onMay 20, 2017

如何生成斐波那契?盗?/strong>

斐波那契(Fibonacci)?盗惺且桓龇浅<虻サ牡莨槭?校??谝桓龊偷诙?鍪?猓?我庖桓鍪?伎捎汕傲礁鍪?嗉拥玫健S眉扑慊?绦蚴涑鲮巢?瞧?盗械那 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契?盗星 N 个数

def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    print b 
    a, b = b, a + b 
    n = n + 1

执行 fab(5),我们可以得到如下输出:

 >>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契?盗星 N 个数第二版

def fab(max): 
  n, a, b = 0, 0, 1 
  L = [] 
  while n < max: 
    L.append(b) 
    a, b = b, a + b 
    n = n + 1 
  return L

可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

 for i in range(1000): pass会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 

  def __init__(self, max): 
    self.max = max 
    self.n, self.a, self.b = 0, 0, 1 

  def __iter__(self): 
    return self 

  def next(self): 
    if self.n < self.max: 
      r = self.b 
      self.a, self.b = self.b, self.a + self.b 
      self.n = self.n + 1 
      return r 
    raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    yield b 
    # print b 
    a, b = b, a + b 
    n = n + 1 

'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

>>> f = fab(5) 
 >>> f.next() 
 1 
 >>> f.next() 
 1 
 >>> f.next() 
 2 
 >>> f.next() 
 3 
 >>> f.next() 
 5 
 >>> f.next() 
 Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
 StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

>>> from inspect import isgeneratorfunction 
 >>> isgeneratorfunction(fab) 
 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

>>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True
fab 是无法迭代的,而 fab(5) 是可迭代的:
 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 
 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
 

>>> f1 = fab(3) 
 >>> f2 = fab(5) 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 2 
 >>> print 'f2:', f2.next() 
 f2: 2 
 >>> print 'f2:', f2.next() 
 f2: 3 
 >>> print 'f2:', f2.next() 
 f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

def read_file(fpath): 
  BLOCK_SIZE = 1024 
  with open(fpath, 'rb') as f: 
    while True: 
      block = f.read(BLOCK_SIZE) 
      if block: 
        yield block 
      else: 
        return

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
结合Python的SimpleHTTPServer源码来解析socket通信
Jun 27 Python
详解tensorflow训练自己的数据集实现CNN图像分类
Feb 07 Python
Python中一般处理中文的几种方法
Mar 06 Python
python把转列表为集合的方法
Jun 28 Python
pip安装python库的方法总结
Aug 02 Python
Pytorch反向求导更新网络参数的方法
Aug 17 Python
python-Web-flask-视图内容和模板知识点西宁街
Aug 23 Python
利用python实现冒泡排序算法实例代码
Dec 01 Python
基于pytorch padding=SAME的解决方式
Feb 18 Python
Python实现企业微信机器人每天定时发消息实例
Feb 25 Python
TensorFlow2.1.0安装过程中setuptools、wrapt等相关错误指南
Apr 08 Python
一个非常简单好用的Python图形界面库(PysimpleGUI)
Dec 28 Python
Python学习小技巧之列表项的拼接
May 20 #Python
Django验证码的生成与使用示例
May 20 #Python
Linux RedHat下安装Python2.7开发环境
May 20 #Python
深入理解Python中的内置常量
May 20 #Python
python万年历实现代码 含运行结果
May 20 #Python
关于pip的安装,更新,卸载模块以及使用方法(详解)
May 19 #Python
python通过pip更新所有已安装的包实现方法
May 19 #Python
You might like
德生PL990的分析评价
2021/03/02 无线电
PHP实现将HTML5中Canvas图像保存到服务器的方法
2014/11/28 PHP
phpStudy访问速度慢和启动失败的解决办法
2015/11/19 PHP
JavaScript中的History历史对象
2008/01/16 Javascript
Javascript笔记一 js以及json基础使用说明
2010/05/22 Javascript
详解JavaScript对象序列化
2016/01/19 Javascript
js 文字超出长度用省略号代替,鼠标悬停并以悬浮框显示实例
2016/12/06 Javascript
jQuery Ajax前后端使用JSON进行交互示例
2017/03/17 Javascript
Node.js设置CORS跨域请求中多域名白名单的方法
2017/03/28 Javascript
基于代数方程库Algebra.js解二元一次方程功能示例
2017/06/09 Javascript
VSCode 配置React Native开发环境的方法
2017/12/27 Javascript
JS实现读取xml内容并输出到div中的方法示例
2018/04/19 Javascript
vue中Element-ui 输入银行账号每四位加一个空格的实现代码
2018/09/14 Javascript
webpack打包nodejs项目的方法
2018/09/26 NodeJs
使用AutoJs实现微信抢红包的代码
2020/12/31 Javascript
django自定义Field实现一个字段存储以逗号分隔的字符串
2014/04/27 Python
python中通过预先编译正则表达式提高效率
2017/09/25 Python
python中的Elasticsearch操作汇总
2019/10/30 Python
如何配置关联Python 解释器 Anaconda的教程(图解)
2020/04/30 Python
python如何爬取网页中的文字
2020/07/28 Python
如何解决pycharm调试报错的问题
2020/08/06 Python
golang/python实现归并排序实例代码
2020/08/30 Python
python+excel接口自动化获取token并作为请求参数进行传参操作
2020/11/10 Python
pandas 按日期范围筛选数据的实现
2021/02/20 Python
采购文员岗位职责
2013/11/20 职场文书
理财投资建议书
2014/03/12 职场文书
如何撰写一封出色的求职信
2014/04/27 职场文书
一般基层干部群众路线教育实践活动个人对照检查材料
2014/11/04 职场文书
五好家庭事迹材料
2014/12/20 职场文书
人力资源部岗位职责
2015/02/11 职场文书
2015年感恩父亲节演讲稿
2015/03/19 职场文书
心术观后感
2015/06/11 职场文书
如何写通讯稿
2015/07/22 职场文书
《酸的和甜的》教学反思
2016/02/18 职场文书
《女娲补天》读后感5篇
2019/12/31 职场文书
在MySQL中你成功的避开了所有索引
2022/04/20 MySQL