MongoDB支持的索引类型


Posted in MongoDB onApril 11, 2022

MongoDB 4.2官方支持索引类型如下:

  • 单字段索引
  • 复合索引
  • 多键索引
  • 文本索引
  • 2dsphere索引
  • 2d索引
  • geoHaystack索引
  • 哈希索引

单字段索引

在单个字段上创建升序索引

handong1:PRIMARY> db.test.getIndexes()
[
	{
		"v" : 2,
		"key" : {
			"_id" : 1
		},
		"name" : "_id_",
		"ns" : "db6.test"
	}
]

在字段id上添加升序索引

handong1:PRIMARY> db.test.createIndex({"id":1})
{
	"createdCollectionAutomatically" : false,
	"numIndexesBefore" : 1,
	"numIndexesAfter" : 2,
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621322378, 1),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621322378, 1)
}
handong1:PRIMARY> db.test.getIndexes()
[
	{
		"v" : 2,
		"key" : {
			"_id" : 1
		},
		"name" : "_id_",
		"ns" : "db6.test"
	},
	{
		"v" : 2,
		"key" : {
			"id" : 1
		},
		"name" : "id_1",
		"ns" : "db6.test"
	}
]
handong1:PRIMARY> db.test.find({"id":100})
{ "_id" : ObjectId("60a35d061f183b1d8f092114"), "id" : 100, "name" : "handong", "ziliao" : { "name" : "handong", "age" : 25, "hobby" : "mongodb" } }

上述查询可以使用新建的单字段索引。

在嵌入式字段上创建索引

handong1:PRIMARY> db.test.createIndex({"ziliao.name":1})
{
	"createdCollectionAutomatically" : false,
	"numIndexesBefore" : 2,
	"numIndexesAfter" : 3,
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621323677, 2),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621323677, 2)
}

以下查询可以用的新建的索引。

db.test.find({"ziliao.name":"handong"})

在内嵌文档上创建索引

handong1:PRIMARY> db.test.createIndex({ziliao:1})
{
	"createdCollectionAutomatically" : false,
	"numIndexesBefore" : 3,
	"numIndexesAfter" : 4,
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621324059, 2),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621324059, 2)
}

以下查询可以使用新建的索引。

db.test.find({ziliao:{ "name" : "handong", "age" : 25, "hobby" : "mongodb" }})

复合索引

创建复合索引

db.user.createIndex({"product_id":1,"type":-1})

以下查询可以用到新建的复合索引

db.user.find({"product_id":"e5a35cfc70364d2092b8f5d14b1a3217","type":0})

多键索引

基于一个数组创建索引,MongoDB会自动创建为多键索引,无需刻意指定。
多键索引也可以基于内嵌文档来创建。
多键索引的边界值的计算依赖于特定的规则。
查看文档:

handong1:PRIMARY> db.score.find()
{ "_id" : ObjectId("60a32d7f1f183b1d8f0920ad"), "name" : "dandan", "age" : 30, "score" : [ { "english" : 90, "math" : 99, "physics" : 88 } ], "is_del" : false }
{ "_id" : ObjectId("60a32d8b1f183b1d8f0920ae"), "name" : "dandan", "age" : 30, "score" : [ 99, 98, 97, 96 ], "is_del" : false }
{ "_id" : ObjectId("60a32d9a1f183b1d8f0920af"), "name" : "dandan", "age" : 30, "score" : [ 100, 100, 100, 100 ], "is_del" : false }
{ "_id" : ObjectId("60a32e8c1f183b1d8f0920b0"), "name" : "dandan", "age" : 30, "score" : [ { "english" : 70, "math" : 99, "physics" : 88 } ], "is_del" : false }
{ "_id" : ObjectId("60a37b141f183b1d8f0aa751"), "name" : "dandan", "age" : 30, "score" : [ 96, 95 ] }
{ "_id" : ObjectId("60a37b1d1f183b1d8f0aa752"), "name" : "dandan", "age" : 30, "score" : [ 96, 95, 94 ] }
{ "_id" : ObjectId("60a37b221f183b1d8f0aa753"), "name" : "dandan", "age" : 30, "score" : [ 96, 95, 94, 93 ] }

创建score字段多键索引:

db.score.createIndex("score":1)
handong1:PRIMARY> db.score.find({"score":[ 96, 95 ]})
{ "_id" : ObjectId("60a37b141f183b1d8f0aa751"), "name" : "dandan", "age" : 30, "score" : [ 96, 95 ] }

查看执行计划:

handong1:PRIMARY> db.score.find({"score":[ 96, 95 ]}).explain()
{
	"queryPlanner" : {
		"plannerVersion" : 1,
		"namespace" : "db6.score",
		"indexFilterSet" : false,
		"parsedQuery" : {
			"score" : {
				"$eq" : [
					96,
					95
				]
			}
		},
		"queryHash" : "8D76FC59",
		"planCacheKey" : "E2B03CA1",
		"winningPlan" : {
			"stage" : "FETCH",
			"filter" : {
				"score" : {
					"$eq" : [
						96,
						95
					]
				}
			},
			"inputStage" : {
				"stage" : "IXSCAN",
				"keyPattern" : {
					"score" : 1
				},
				"indexName" : "score_1",
				"isMultiKey" : true,
				"multiKeyPaths" : {
					"score" : [
						"score"
					]
				},
				"isUnique" : false,
				"isSparse" : false,
				"isPartial" : false,
				"indexVersion" : 2,
				"direction" : "forward",
				"indexBounds" : {
					"score" : [
						"[96.0, 96.0]",
						"[[ 96.0, 95.0 ], [ 96.0, 95.0 ]]"
					]
				}
			}
		},
		"rejectedPlans" : [ ]
	},
	"serverInfo" : {
		"host" : "mongo3",
		"port" : 27017,
		"version" : "4.2.12",
		"gitVersion" : "5593fd8e33b60c75802edab304e23998fa0ce8a5"
	},
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621326912, 1),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621326912, 1)
}

可以看到已经使用了新建的多键索引。

文本索引

    为了支持对字符串内容的文本搜索查询,MongoDB提供了文本索引。文本(text )索引可以包含任何值为字符串或字符串元素数组的字段

db.user.createIndex({"sku_attributes":"text"})
db.user.find({$text:{$search:"测试"}})

查看执行计划:

handong1:PRIMARY> db.user.find({$text:{$search:"测试"}}).explain()
{
	"queryPlanner" : {
		"plannerVersion" : 1,
		"namespace" : "db6.user",
		"indexFilterSet" : false,
		"parsedQuery" : {
			"$text" : {
				"$search" : "测试",
				"$language" : "english",
				"$caseSensitive" : false,
				"$diacriticSensitive" : false
			}
		},
		"queryHash" : "83098EE1",
		"planCacheKey" : "7E2D582B",
		"winningPlan" : {
			"stage" : "TEXT",
			"indexPrefix" : {
				
			},
			"indexName" : "sku_attributes_text",
			"parsedTextQuery" : {
				"terms" : [
					"测试"
				],
				"negatedTerms" : [ ],
				"phrases" : [ ],
				"negatedPhrases" : [ ]
			},
			"textIndexVersion" : 3,
			"inputStage" : {
				"stage" : "TEXT_MATCH",
				"inputStage" : {
					"stage" : "FETCH",
					"inputStage" : {
						"stage" : "OR",
						"inputStage" : {
							"stage" : "IXSCAN",
							"keyPattern" : {
								"_fts" : "text",
								"_ftsx" : 1
							},
							"indexName" : "sku_attributes_text",
							"isMultiKey" : true,
							"isUnique" : false,
							"isSparse" : false,
							"isPartial" : false,
							"indexVersion" : 2,
							"direction" : "backward",
							"indexBounds" : {
								
							}
						}
					}
				}
			}
		},
		"rejectedPlans" : [ ]
	},
	"serverInfo" : {
		"host" : "mongo3",
		"port" : 27017,
		"version" : "4.2.12",
		"gitVersion" : "5593fd8e33b60c75802edab304e23998fa0ce8a5"
	},
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621328543, 1),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621328543, 1)
}

可以看到通过文本索引可以查到包含测试关键字的数据。
**注意:**可以根据自己需要创建复合文本索引。

2dsphere索引

创建测试数据

db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.291226, 39.981198 ] },
      name: "火器营桥",
      category : "火器营桥"
   }
)


db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.281452, 39.914226 ] },
      name: "五棵松",
      category : "五棵松"
   }
)

db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.378038, 39.851467 ] },
      name: "角门西",
      category : "角门西"
   }
)


db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.467833, 39.881581 ] },
      name: "潘家园",
      category : "潘家园"
   }
)

db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.468264, 39.914766 ] },
      name: "国贸",
      category : "国贸"
   }
)

db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.46618, 39.960213 ] },
      name: "三元桥",
      category : "三元桥"
   }
)

db.places.insert(
   {
      loc : { type: "Point", coordinates: [ 116.400064, 40.007827 ] },
      name: "奥林匹克森林公园",
      category : "奥林匹克森林公园"
   }
)

添加2dsphere索引

db.places.createIndex( { loc : "2dsphere" } )
db.places.createIndex( { loc : "2dsphere" , category : -1, name: 1 } )

利用2dsphere索引查询多边形里的点

凤凰岭
[116.098234,40.110569]
天安门
[116.405239,39.913839]
四惠桥
[116.494351,39.912068]
望京
[116.494494,40.004594]

handong1:PRIMARY> db.places.find( { loc :
...                   { $geoWithin :
...                     { $geometry :
...                       { type : "Polygon" ,
...                         coordinates : [ [
...                                           [116.098234,40.110569] ,
...                                           [116.405239,39.913839] ,
...                                           [116.494351,39.912068] ,
...                                           [116.494494,40.004594] ,
...                                           [116.098234,40.110569]
...                                         ] ]
...                 } } } } )
{ "_id" : ObjectId("60a4c950d4211a77d22bf7f8"), "loc" : { "type" : "Point", "coordinates" : [ 116.400064, 40.007827 ] }, "name" : "奥林匹克森林公园", "category" : "奥林匹克森林公园" }
{ "_id" : ObjectId("60a4c94fd4211a77d22bf7f7"), "loc" : { "type" : "Point", "coordinates" : [ 116.46618, 39.960213 ] }, "name" : "三元桥", "category" : "三元桥" }
{ "_id" : ObjectId("60a4c94fd4211a77d22bf7f6"), "loc" : { "type" : "Point", "coordinates" : [ 116.468264, 39.914766 ] }, "name" : "国贸", "category" : "国贸" }

可以看到把集合中包含在指定四边形里的点,全部列了出来。

利用2dsphere索引查询球体上定义的圆内的点

handong1:PRIMARY> db.places.find( { loc :
...                   { $geoWithin :
...                     { $centerSphere :
...                        [ [ 116.439518, 39.954751 ] , 2/3963.2 ]
...                 } } } )
{ "_id" : ObjectId("60a4c94fd4211a77d22bf7f7"), "loc" : { "type" : "Point", "coordinates" : [ 116.46618, 39.960213 ] }, "name" : "三元桥", "category" : "三元桥" }

返回所有半径为经度 116.439518 E 和纬度 39.954751 N 的2英里内坐标。示例将2英里的距离转换为弧度,通过除以地球近似的赤道半径3963.2英里。

2d索引

在以下情况下使用2d索引:

  • 您的数据库具有来自MongoDB 2.2或更早版本的旧版旧版坐标对。
  • 您不打算将任何位置数据存储为GeoJSON对象。

哈希索引

要创建hashed索引,请指定 hashed 作为索引键的值,如下例所示:

handong1:PRIMARY> db.test.createIndex({"_id":"hashed"})
{
	"createdCollectionAutomatically" : false,
	"numIndexesBefore" : 4,
	"numIndexesAfter" : 5,
	"ok" : 1,
	"$clusterTime" : {
		"clusterTime" : Timestamp(1621419338, 1),
		"signature" : {
			"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
			"keyId" : NumberLong(0)
		}
	},
	"operationTime" : Timestamp(1621419338, 1)
}

注意事项

  • MongoDB支持任何单个字段的 hashed 索引。hashing函数折叠嵌入的文档并计算整个值的hash值,但不支持多键(即.数组)索引。
  • 您不能创建具有hashed索引字段的复合索引,也不能在索引上指定唯一约束hashed;但是,您可以hashed在同一字段上创建索引和升序/降序(即非哈希)索引:MongoDB将对范围查询使用标量索引。

 到此这篇关于MongoDB索引类型汇总分享的文章就介绍到这了,更多相关MongoDB索引内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

MongoDB 相关文章推荐
详解MongoDB的条件查询和排序
Jun 23 MongoDB
阿里云服务器部署mongodb的详细过程
Sep 04 MongoDB
mongodb清除连接和日志的正确方法分享
Sep 15 MongoDB
centos8安装MongoDB的详细过程
Oct 24 MongoDB
SpringBoot系列之MongoDB Aggregations用法详解
Feb 12 MongoDB
MongoDB数据库部署环境准备及使用介绍
Mar 21 MongoDB
mongoDB数据库索引快速入门指南
Mar 23 MongoDB
MongoDB误操作后使用oplog恢复数据
Apr 11 MongoDB
Centos系统通过Docker安装并搭建MongoDB数据库
Apr 12 MongoDB
MongoDB支持的数据类型
Apr 11 #MongoDB
MongoDB误操作后使用oplog恢复数据
Apr 11 #MongoDB
mongoDB数据库索引快速入门指南
MongoDB数据库部署环境准备及使用介绍
一次线上mongo慢查询问题排查处理记录
Mar 18 #MongoDB
SpringBoot 整合mongoDB并自定义连接池的示例代码
Feb 28 #MongoDB
剖析后OpLog订阅MongoDB的数据变更就没那么难了
You might like
espresso double下 咖啡粉超细时 饼压力对咖啡的影响
2021/03/03 冲泡冲煮
缅甸的咖啡简史
2021/03/04 咖啡文化
php 操作符与控制结构
2012/03/07 PHP
PHP重定向的3种方式
2013/03/07 PHP
PHP数组与字符串互相转换实例
2020/05/05 PHP
jQuery中与toggleClass等价的程序段 以及未来学习的方向
2010/03/18 Javascript
获取鼠标在div中的相对位置的实现代码
2013/12/30 Javascript
javascript 密码框防止用户粘贴和复制的实现代码
2014/02/17 Javascript
javascript常用函数(2)
2015/11/05 Javascript
AngularJS ng-style中使用filter
2016/09/21 Javascript
常用Javascript函数与原型功能收藏(必看篇)
2016/10/09 Javascript
jQuery编写设置和获取颜色的插件
2017/01/09 Javascript
js实现网页的两个input标签内的数值加减(示例代码)
2017/08/15 Javascript
小程序测试后台服务的方法(ngrok)
2019/03/08 Javascript
Vue分页器实现原理详解
2019/06/28 Javascript
基于form-data请求格式详解
2019/10/29 Javascript
小程序自动化测试的示例代码
2020/08/11 Javascript
解决vue-pdf查看pdf文件及打印乱码的问题
2020/11/04 Javascript
利用Python如何批量修改数据库执行Sql文件
2018/07/29 Python
pyqt5利用pyqtDesigner实现登录界面
2019/03/28 Python
pycharm重命名文件的方法步骤
2019/07/29 Python
python获取依赖包和安装依赖包教程
2020/02/13 Python
解决django框架model中外键不落实到数据库问题
2020/05/20 Python
scrapy利用selenium爬取豆瓣阅读的全步骤
2020/09/20 Python
Python tkinter之ComboBox(下拉框)的使用简介
2021/02/05 Python
The Body Shop美体小铺西班牙官网:天然化妆品
2019/06/21 全球购物
Nixon手表英国官网:美国尼克松手表品牌
2020/02/10 全球购物
香港艺人陈冠希创办的潮流品牌:JUICESTORE
2021/03/04 全球购物
android面试问题与答案
2016/12/27 面试题
什么是Web Service?
2012/07/25 面试题
师范大学应届生求职信
2013/11/21 职场文书
ktv周年庆活动方案
2014/08/18 职场文书
劳资员岗位职责
2015/02/13 职场文书
JavaScript分页组件使用方法详解
2021/07/26 Javascript
MySQL修炼之联结与集合浅析
2021/10/05 MySQL
Java基础——Map集合
2022/04/01 Java/Android