python常用函数详解


Posted in Python onSeptember 13, 2016

1.函数的介绍

为什么要有函数?因为在平时写代码时,如果没有函数的话,那么将会出现很多重复的代码,这样代码重用率就比较低。。。并且这样的代码维护起来也是很有难度的,为了解决这些问题,就出现了函数,用来将一些经常出现的代码进行封装,这样就可以在任何需要调用这段代码的地方调用这个函数就行了。

函数的定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可

特性:

代码重用
保持一致性
可扩展性

2.函数的创建

在python中函数定义的格式如下:

def 函数名(形参):
 函数体内部代码块

函数的调用使用 函数名(实参) 就可以调用函数了。

函数名的命名规则和变量的命名规则一样:

  • 函数名必须以下划线或字母开头,可以包含任意字母、数字或下划线的组合。不能使用任何的标点符号;
  • 函数名是区分大小写的。
  • 函数名不能是保留字。

形参和实参的区别:

函数在定义的时候,函数名后面的括号中可以添加参数,这些参数就叫做形参,形参:顾名思义就是形式参数,只是一个代号。

实参是在调用函数的时候函数名后面的括号中的参数,形参和实参需要一一对应起来,否则调用函数会报错。

3.函数参数及返回值

前面提到函数的形参和实参要一一对应,那么参数对应有如下几种:

  1. 必须参数
  2. 关键字参数
  3. 默认参数
  4. 不定长参数 *args
  5. 不定长参数 **kwargs

1.必须参数:

必须参数必须以对应的关系一个一个传递进入函数,函数调用时传递的实参必须和函数定义时的形参一一对应,不能多也不能少,顺序也得一致。

举个栗子:

def f(name,age):
   print(name,age)
 f("小明",18)

2.关键字参数

关键字参数是实参里面的概念,在调用函数的时候声明某个参数是属于某个关键字的。使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。

举个栗子:

def f(name,age):
   print(name,age)
 f(name="小明",18)

3.默认参数

默认参数是在函数声明的时候,可以给某个参数指定默认值,这样的参数叫做默认值参数。如果在调用函数的时候,默认参数没有接收到对应的实参,那么就会将默认值赋值给这个参数。

举个栗子:

def f(name,age,sex="male"):
   print(name,age,sex)
 f(name="小明",18)

这样,就会把默认参数male赋值给sex了。

4.不定长参数 *args

在python里面,函数在声明的时候,参数中可以使用(*变量名)的方式来接受不确定长度的参数,但是在python里面大家约定俗成使用*args接受不定长参数,这样在调用函数的时候传递的参数就可以是不定长度的了。args接受了不定长参数之后,将这些参数放到一个tuple里面,可以通过访问args来获取这些不定长参数。

举个栗子:

def f(*args):
   print(args)
 f("小明",18,"male")

打印出来的是一个tuple,里面存放了(“小明”,18,”male”)这三个元素。

5.不定长参数 **kwargs

但是上面的args只能接收未命名的参数,那假如有类似于关键字参数的不定长参数该怎么办呢?python里面使用(**变量名)来接收不定长的命名变量参数。同样,python里面也约定俗成使用**kwargs接收不定长命名参数。kwargs接收了不定长参数之后,将这些参数放到一个字典里面,可以通过key获取到相应的参数值。

举个栗子:

def f(**kwargs):
   print(kwargs)
 f(name="小明",age=18,sex="male")

介绍完了这些参数之后,接下来要介绍的是关于这些参数混合使用的情况:

假如一个函数使用了上面所有种类的参数,那该怎么办?为了不产生歧义,python里面规定了假如有多种参数混合的情况下,遵循如下的顺序使用规则:

 def f(必须参数,默认参数,*args,**kwargs):
     pass
如果同时存在args和kwargs的话,args在左边

默认参数在必须参数的右边,在*args的左边

关键字参数的位置不固定(ps:关键字参数也不在函数定义的时候确定)

那么,假如有一个列表想要传递进入一个不定长的未命名参数的函数中去,可以在该列表前面加上*实现,同理如果想传递一个字典进入不定长命名参数的函数中去,可以在该字典前面加上**

举个栗子:

def f(*args,**kwargs):
   print(args)
   for i in kwargs:
     print("%s:%s"%(i,kwargs[i]))
 
 f(*[1,2,3],**{"a":1,"b":2})

函数的返回值

要想获取函数的执行结果,就可以用return语句把结果返回

注意:

函数在执行过程中只要遇到return语句,就会停止执行并返回结果,也可以理解为 return 语句代表着函数的结束 如果未在函数中指定return,那这个函数的返回值为None
return多个对象,解释器会把这多个对象组装成一个元组作为一个一个整体结果输出。

4.LEGB作用域

python中的作用域分4种情况:

L:local,局部作用域,即函数中定义的变量;

E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的;

G:globa,全局变量,就是模块级别定义的变量;

B:built-in,系统固定模块里面的变量,比如int, bytearray等。 搜索变量的优先级顺序依次是:作用域局部>外层作用域>当前模块中的全局>python内置作用域,也就是LEGB。

local和enclosing是相对的,enclosing变量相对上层来说也是local。

在Python中,只有模块(module),类(class)以及函数(def、lambda)才会引入新的作用域,其它的代码块(如if、try、for等)不会引入新的作用域。

变量的修改(错误修改,面试题里经常出):

x=6
 def f2():
   print(x)
   x=5
 f2()
 
 # 错误的原因在于print(x)时,解释器会在局部作用域找,会找到x=5(函数已经加载到内存),但x使用在声明前了,所以报错:
 # local variable 'x' referenced before assignment.如何证明找到了x=5呢?简单:注释掉x=5,x=6
 # 报错为:name 'x' is not defined
 #同理
 x=6
 def f2():
   x+=1 #local variable 'x' referenced before assignment.
 f2()

global关键字

当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了,当修改的变量是在全局作用域(global作用域)上的,就要使用global先声明一下,代码如下:

count = 10
 def outer():
   global count
   print(count) 
   count = 100
   print(count)
 outer()

nonlocal关键字

global关键字声明的变量必须在全局作用域上,不能嵌套作用域上,当要修改嵌套作用域(enclosing作用域,外层非全局作用域)中的变量怎么办呢,这时就需要nonlocal关键字了

def outer():
   count = 10
   def inner():
     nonlocal count
     count = 20
     print(count)
   inner()
   print(count)
 outer()

小结

  • 变量查找顺序:LEGB,作用域局部>外层作用域>当前模块中的全局>python内置作用域;
  • 只有模块、类、及函数才能引入新作用域;
  • 对于一个变量,内部作用域先声明就会覆盖外部变量,不声明直接使用,就会使用外部作用域的变量;
  • 内部作用域要修改外部作用域变量的值时,全局变量要使用global关键字,嵌套作用域变量要使用nonlocal关键字。nonlocal是python3新增的关键字,有了这个 关键字,就能完美的实现闭包了。

5.特殊函数

递归函数定义:递归函数就是在函数内部调用自己

有时候解决某些问题的时候,逻辑比较复杂,这时候可以考虑使用递归,因为使用递归函数的话,逻辑比较清晰,可以解决一些比较复杂的问题。但是递归函数存在一个问题就是假如递归调用自己的次数比较多的话,将会使得计算速度变得很慢,而且在python中默认的递归调用深度是1000层,超过这个层数将会导致“爆栈”。。。所以,在可以不用递归的时候建议尽量不要使用递归。

举个栗子:

def factorial(n): # 使用循环实现求和
   Sum=1
   for i in range(2,n+1):
     Sum*=i
   return Sum
 print(factorial(7))
 
 def recursive_factorial(n): # 使用递归实现求和
   return (2 if n==2 else n*recursive_factorial(n-1))
 
 print(recursive_factorial(7))
 
 def feibo(n): # 使用递归实现菲波那切数列
   if n==0 or n==1:return n
   else:return feibo(n-1)+feibo(n-2)
 print(feibo(8))
 
 def feibo2(n): # 使用循环实现菲波那切数列
   before,after=0,1
   for i in range(n):
     before,after=after,before+after
   return before
 print(feibo2(300))

递归函数的优点:定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

递归特性:

  • 必须有一个明确的结束条件
  • 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
  • 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返 回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。)

6.函数式编程

关于函数式编程,我理解的也不是很深,但是python中有4个比较重要的内置函数,组合起来使用有时候能大大提高编程效率。

1 filter(function, sequence)

 str = ['a', 'b','c', 'd']
 def fun1(s):
   if s != 'a':
     return s
 ret = filter(fun1, str)
print(list(ret))# ret是一个迭代器对象

对sequence中的item依次执行function(item),将执行结果为True的item做成一个filter object的迭代器返回。可以看作是过滤函数。

2 map(function, sequence)

str = [1, 2,'a', 'b']
 def fun2(s):
   return s + "alvin"
 ret = map(fun2, str)
 print(ret)   # map object的迭代器
 print(list(ret))# ['aalvin', 'balvin', 'calvin', 'dalvin']

对sequence中的item依次执行function(item),将执行结果组成一个map object迭代器返回. map也支持多个sequence,这就要求function也支持相应数量的参数输入:

def add(x,y):
   return x+y
 print (list(map(add, range(10), range(10))))##[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

3 reduce(function, sequence, starting_value)

from functools import reduce
 def add1(x,y):
   return x + y
 
 print (reduce(add1, range(1, 101)))## 4950 (注:1+2+...+99)
 print (reduce(add1, range(1, 101), 20))## 4970 (注:1+2+...+99+20)

对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用.

4 lambda

普通函数与匿名函数的对比:

#普通函数
 def add(a,b):
   return a + b
 
 print add(2,3)
 
 
 #匿名函数
 add = lambda a,b : a + b
 print add(2,3)
 
 
 #========输出===========
 5
 5

匿名函数的命名规则,用lamdba 关键字标识,冒号(:)左侧表示函数接收的参数(a,b) ,冒号(:)右侧表示函数的返回值(a+b)。

因为lamdba在创建时不需要命名,所以,叫匿名函数

Python 相关文章推荐
Python学习资料
Feb 08 Python
一个基于flask的web应用诞生(1)
Apr 11 Python
python实现简单遗传算法
Mar 19 Python
python遍历文件夹,指定遍历深度与忽略目录的方法
Jul 11 Python
python3判断url链接是否为404的方法
Aug 10 Python
详解如何在Apache中运行Python WSGI应用
Jan 02 Python
python 实现GUI(图形用户界面)编程详解
Jul 17 Python
python实现的接收邮件功能示例【基于网易POP3服务器】
Sep 11 Python
Python2与Python3的区别点整理
Dec 12 Python
python 实现从高分辨图像上抠取图像块
Jan 02 Python
Python趣味入门教程之循环语句while
Aug 26 Python
python字符串的一些常见实用操作
Apr 06 Python
python如何查看系统网络流量的信息
Sep 12 #Python
Python爬取三国演义的实现方法
Sep 12 #Python
python 读写、创建 文件的方法(必看)
Sep 12 #Python
Python读写Json涉及到中文的处理方法
Sep 12 #Python
详细介绍Python的鸭子类型
Sep 12 #Python
Python 读写文件和file对象的方法(推荐)
Sep 12 #Python
使用Python进行二进制文件读写的简单方法(推荐)
Sep 12 #Python
You might like
供参考的 php 学习提高路线分享
2011/10/23 PHP
Zend Framework连接Mysql数据库实例分析
2016/03/19 PHP
Thinkphp3.2简单解决多文件上传只上传一张的问题
2017/09/26 PHP
PHP封装cURL工具类与应用示例
2019/07/01 PHP
JavaScript Event学习第七章 事件属性
2010/02/07 Javascript
jquery的clone方法应用于textarea和select的bug修复
2014/06/26 Javascript
NodeJS学习笔记之Connect中间件应用实例
2015/01/27 NodeJs
JavaScript Date 知识浅析
2017/01/29 Javascript
webpack2.0配置postcss-loader的方法
2017/08/17 Javascript
JavaScript中Hoisting详解 (变量提升与函数声明提升)
2017/08/18 Javascript
基于js 字符串indexof与search方法的区别(详解)
2017/12/04 Javascript
浅谈Redux中间件的实践
2018/07/27 Javascript
LayUi中接口传数据成功,表格不显示数据的解决方法
2018/08/19 Javascript
Vue 实现前进刷新后退不刷新的效果
2019/06/14 Javascript
Vue v-text指令简单使用方法示例
2019/09/19 Javascript
JS 事件机制完整示例分析
2020/01/15 Javascript
node事件循环和process模块实例分析
2020/02/14 Javascript
JavaScript实现随机点名小程序
2020/10/29 Javascript
Python模拟用户登录验证
2017/09/11 Python
Python多层装饰器用法实例分析
2018/02/09 Python
pandas ix &iloc &loc的区别
2019/01/10 Python
利用Python实现微信找房机器人实例教程
2019/03/10 Python
Python列表切片常用操作实例解析
2019/12/16 Python
Python内置异常类型全面汇总
2020/05/28 Python
python+requests实现接口测试的完整步骤
2020/10/27 Python
python3代码输出嵌套式对象实例详解
2020/12/03 Python
Bath & Body Works阿联酋:在线购买沐浴和身体用品
2021/02/27 全球购物
法国低价在线宠物商店:bitiba.fr
2020/07/03 全球购物
彪马香港官方网上商店:PUMA香港
2020/12/06 全球购物
Linux如何压缩可执行文件
2013/10/21 面试题
情人节活动策划方案
2014/02/27 职场文书
大学第二课堂活动总结
2014/07/08 职场文书
关于长城的导游词
2015/01/30 职场文书
2015年小学中秋节活动总结
2015/03/23 职场文书
优秀共产党员主要事迹材料
2015/11/05 职场文书
学习社交礼仪心得体会
2016/01/22 职场文书