MongoDB使用profile分析慢查询的步骤


Posted in MongoDB onApril 30, 2021

      在MongoDB中,如果发生了慢查询,我们如何得到这些慢查询的语句,并优化呢?今天来看这块儿的一些心得。

01 如何收集慢查询?

    在MongoDB中,通常可以开启profile来收集慢日志,查看当前profile状态的语句如下:

test1:PRIMARY> db.getProfilingStatus()
{
        "was" : 2,
        "slowms" : 0,
        "sampleRate" : 1,
        "$gleStats" : {
                "lastOpTime" : Timestamp(0, 0),
                "electionId" : ObjectId("7fffffff0000000000000005")
        },
        "lastCommittedOpTime" : Timestamp(1619186976, 2),
        "$configServerState" : {
                "opTime" : {
                        "ts" : Timestamp(1619186976, 1),
                        "t" : NumberLong(2)
                }
        },
        "$clusterTime" : {
                "clusterTime" : Timestamp(1619186976, 2),
                "signature" : {
                        "hash" : BinData(0,"zvwFpgc0KFxieMpj7mBPdrOnonI="),
                        "keyId" : NumberLong("6904838687771590657")
                }
        },
        "operationTime" : Timestamp(1619186976, 2)
}

这里我们可以看到2个关键参数,分别是was和slowms,其中:

was=0,代表不记录任何的语句;

was=1,代表记录执行时间超过slowms的语句

was=2,代表记录所有的语句

slowms代表语句的阈值,单位是ms

上图中的结果代表我们的实例会收集所有的查询语句。profile收集的查询语句结果存放在admin数据库中的system.profile集合中,可以通过下面的方法进行访问:

test1:PRIMARY> use admin
switched to db admin

test1:PRIMARY> db.system.profile.find({'op':'query'},{'op':1,'ns':1,'millis':1,'ts':1})
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:14.815Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.139Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.141Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.239Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.155Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.192Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.225Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.273Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.276Z") }

02 system.profile慢查询集合分析

   admin数据库中的system.profile是一个固定集合,保存着超过设置的慢查询的结果。我们来看里面的一条慢查询。

    利用下面的方法,来拿到一条数据,并对其中的关键字段进行注释说明:

test1:PRIMARY> db.system.profile.findOne({'op':'query'})
{
        "op" : "query",  # 操作类型
        "ns" : "admin.system.users",  # 命名空间
        "command" : {
                "find" : "system.users",
                "filter" : {
                        "_id" : "admin.root"  # 过滤的字段
                },
                "limit" : 1,
                "singleBatch" : true,
                "lsid" : {
                        "id" : UUID("a6034f5e-77c1-4b19-9669-60e1253edf4b")
                },
                "$readPreference" : {
                        "mode" : "secondaryPreferred"
                },
                "$db" : "admin"
        },
        "keysExamined" : 1,   # 扫描的索引数
        "docsExamined" : 1,   # 扫描的行数
        "cursorExhausted" : true,  
        "numYield" : 0,
        "nreturned" : 1,   # 返回的值的行数
        "locks" : {
                xxxx   #  锁信息
        },
        "flowControl" : {

        },
        "storage" : {
        },
        "responseLength" : 647,
        "protocol" : "op_query",
        "millis" : 0,    # 这个查询的执行时间,因为我们设置的profilestatus是0,因此所有操作都被记录了。
        "planSummary" : "IDHACK",  # 针对_id进行查询
        "execStats" : {   # 查询执行状态
                "stage" : "IDHACK",
                "nReturned" : 1,
                "executionTimeMillisEstimate" : 0,
                "works" : 2,
                "advanced" : 1,
                "needTime" : 0,
                "needYield" : 0,
                "saveState" : 0,
                "restoreState" : 0,
                "isEOF" : 1,
                "keysExamined" : 1,
                "docsExamined" : 1
        },
        "ts" : ISODate("2020-08-27T07:22:14.815Z"),
        "client" : "xx.xx.xx.xx",  # 查询的客户端IP地址
        "allUsers" : [   #  所有的用户信息
                {
                        "user" : "root",
                        "db" : "admin"
                }
        ],
        "user" : "root@admin"   # 使用的用户信息
}

03 慢查询分析利器---explain

   通常情况下,我们可以使用MongoDB的explain语法来分析一个语句的查询性能,包含是否用到索引、扫描行数等信息,explain语法的基本用法:

后置写法
db.system.profile.find({'op':'query'}).explain()
前置写法
db.system.profile.explain().find({'op':'query'})

其中,explain可以放在查询语句的后面或者前面,当然find语法也可以是update、remove、insert

explain语法的输出分为3种不同的详细程度,分别如下:

三种清晰度模式,清晰度越高,则输出的信息越全,默认情况下是queryPlanner:

1、queryPlanner模式(默认)
db.products.explain().count( { quantity: { $gt: 50 } } )

2、executionStats模式
db.products.explain("executionStats").count( { quantity: { $gt: 50 } } )

3、allPlansExecution模式
db.products.explain("allPlansExecution").count( { quantity: { $gt: 50 } } )

其中,allPlansExecution模式输出的信息最多。

下面是一个explain语法的输出内容,查询的SQL如下:

db.getCollection('files').find(
{"cTime":{
           "$gte":ISODate("2021-04-18"),
           "$lt":ISODate("2021-04-19")
       }}).limit(1000).explain("allPlansExecution")

输出的结果如下:

{
        "queryPlanner" : {   # 代表查询的执行计划
                "plannerVersion" : 1,   # 版本号
                "namespace" : "fs.files",   # 查询的命名空间,也就是集合名称
                "indexFilterSet" : false,   # 是否使用了索引过滤,注意,它并不能判定是否使用了索引
                "parsedQuery" : {    # 查询语法解析树
                        "$and" : [
                                {
                                        "cTime" : {
                                                "$lt" : ISODate("2021-04-19T00:00:00Z")
                                        }
                                },
                                {
                                        "cTime" : {
                                                "$gte" : ISODate("2021-04-18T00:00:00Z")
                                        }
                                }
                        ]
                },
                "winningPlan" : {    # 最终选择的查询计划
                        "stage" : "LIMIT",   # 查询的阶段,很重要,下面详细介绍
                        "limitAmount" : 1000,   # 查询结果的limit值
                        "inputStage" : {
                                "stage" : "FETCH",
                                "inputStage" : {
                                        "stage" : "IXSCAN",  # 代表索引扫描
                                        "keyPattern" : {
                                                "cTime" : 1
                                        },
                                        "indexName" : "cTime_1",  #  索引名称
                                        "isMultiKey" : false,    # 下面4个字段都是索引类型分析
                                        "isUnique" : false,
                                        "isSparse" : false,
                                        "isPartial" : false,
                                        "indexVersion" : 1,
                                        "direction" : "forward",
                                        "indexBounds" : {
                                                "cTime" : [
                                                        "[new Date(1618704000000), new Date(1618790400000))"
                                                ]
                                        }
                                }
                        }
                },
                "rejectedPlans" : [ ]  # 候选的没被选中的查询计划
        },
        "serverInfo" : {
                "host" : "xxxx",
                "port" : 24999,
                "version" : "3.2.8",
                "gitVersion" : "ed70e33130c977bda0024c125b56d159573dbaf0"
        },
        "ok" : 1
}

首先解释下stage的几个阶段:

  1. COLLSCAN---全表扫描
  2. IXSCAN---索引扫描
  3. FETCH---根据索引去检索文档
  4. SHARD_MERGE---合并分片结果
  5. IDHACK---针对id进行查询
  6. LIMIT---执行limit

了解了这些stage的阶段之后,我们可以看到,一个查询的过程是一层一层解析的,所以可以看到,stage这个字段有嵌套的情况。winningPlan中的执行计划也是按照一层一层的顺序去执行:

1、先执行最内层的索引扫描(IXSCAN);

2、再执行外面的FETCH,根据索引去拿文档

3、执行最后一步的limit,取指定数目个结果返回给客户端

以上就是MongoDB profile分析慢查询的示例的详细内容,更多关于MongoDB profile分析慢查询的资料请关注三水点靠木其它相关文章!

MongoDB 相关文章推荐
MongoDB balancer的使用详解
Apr 30 MongoDB
MongoDB数据库的安装步骤
Jun 18 MongoDB
MongoDB数据库常用的10条操作命令
Jun 18 MongoDB
MongoDB 常用的crud操作语句
Jun 20 MongoDB
详解MongoDB的条件查询和排序
Jun 23 MongoDB
阿里云服务器部署mongodb的详细过程
Sep 04 MongoDB
mongodb清除连接和日志的正确方法分享
Sep 15 MongoDB
MongoDB日志切割的三种方式总结
Sep 15 MongoDB
MongoDB使用场景总结
Feb 24 MongoDB
一次线上mongo慢查询问题排查处理记录
Mar 18 MongoDB
mongoDB数据库索引快速入门指南
Mar 23 MongoDB
SpringBoot集成MongoDB实现文件上传的步骤
Apr 18 MongoDB
MongoDB balancer的使用详解
Apr 30 #MongoDB
MongoDB数据库的安装步骤
Jun 18 #MongoDB
MongoDB数据库常用的10条操作命令
Jun 18 #MongoDB
MongoDB 常用的crud操作语句
Jun 20 #MongoDB
MongoDB orm框架的注意事项及简单使用
Jun 20 #MongoDB
详解MongoDB的条件查询和排序
Jun 23 #MongoDB
SpringBoot整合MongoDB的实现步骤
Jun 23 #MongoDB
You might like
php对csv文件的读取,写入,输出下载操作详解
2013/08/10 PHP
php模板原理讲解
2013/11/13 PHP
PHP URL参数获取方式的四种例子
2014/02/28 PHP
php将字符串转化成date存入数据库的两种方式
2014/04/28 PHP
ThinkPHP表单令牌错误的相关解决方法分析
2016/05/20 PHP
PHP符合PSR编程规范的实例分享
2016/12/21 PHP
Mac下php 5升级到php 7的步骤详解
2017/04/26 PHP
php简单构造json多维数组的方法示例
2017/06/08 PHP
基于jquery的loading效果实现代码
2010/11/05 Javascript
jquery插件制作教程 txtHover
2012/08/17 Javascript
使用insertAfter()方法在现有元素后添加一个新元素
2014/05/28 Javascript
node.js中的path.join方法使用说明
2014/12/08 Javascript
如何使用HTML5地理位置定位功能
2015/04/27 Javascript
JavaScript的ExtJS框架中表格的编写教程
2016/05/21 Javascript
JS+canvas画一个圆锥实例代码
2017/12/13 Javascript
浅析vue深复制
2018/01/29 Javascript
vue实现树形菜单效果
2018/03/19 Javascript
layer弹出层自适应高度,垂直水平居中的实现
2019/09/16 Javascript
jquery实现简单自动轮播图效果
2020/07/29 jQuery
[33:39]DOTA2上海特级锦标赛C组小组赛#2 LGD VS Newbee第二局
2016/02/27 DOTA
在Python编程过程中用单元测试法调试代码的介绍
2015/04/02 Python
Python中decorator使用实例
2015/04/14 Python
Python实现单词拼写检查
2015/04/25 Python
Python装饰器实现几类验证功能做法实例
2017/05/18 Python
用Eclipse写python程序
2018/02/10 Python
Python3 串口接收与发送16进制数据包的实例
2019/06/12 Python
浅谈Python中的字符串
2020/06/10 Python
Python 字典中的所有方法及用法
2020/06/10 Python
在Python3.74+PyCharm2020.1 x64中安装使用Kivy的详细教程
2020/08/07 Python
python实现人工蜂群算法
2020/09/18 Python
快速创建python 虚拟环境
2020/11/28 Python
萌新HTML5 入门指南(二)
2020/11/09 HTML / CSS
庆祝教师节演讲稿
2014/09/03 职场文书
2016秋季校长开学典礼致辞
2015/11/26 职场文书
MySQL 那些常见的错误设计规范,你都知道吗
2021/07/16 MySQL
css3中transform属性实现的4种功能
2021/08/07 HTML / CSS