MongoDB使用profile分析慢查询的步骤


Posted in MongoDB onApril 30, 2021

      在MongoDB中,如果发生了慢查询,我们如何得到这些慢查询的语句,并优化呢?今天来看这块儿的一些心得。

01 如何收集慢查询?

    在MongoDB中,通常可以开启profile来收集慢日志,查看当前profile状态的语句如下:

test1:PRIMARY> db.getProfilingStatus()
{
        "was" : 2,
        "slowms" : 0,
        "sampleRate" : 1,
        "$gleStats" : {
                "lastOpTime" : Timestamp(0, 0),
                "electionId" : ObjectId("7fffffff0000000000000005")
        },
        "lastCommittedOpTime" : Timestamp(1619186976, 2),
        "$configServerState" : {
                "opTime" : {
                        "ts" : Timestamp(1619186976, 1),
                        "t" : NumberLong(2)
                }
        },
        "$clusterTime" : {
                "clusterTime" : Timestamp(1619186976, 2),
                "signature" : {
                        "hash" : BinData(0,"zvwFpgc0KFxieMpj7mBPdrOnonI="),
                        "keyId" : NumberLong("6904838687771590657")
                }
        },
        "operationTime" : Timestamp(1619186976, 2)
}

这里我们可以看到2个关键参数,分别是was和slowms,其中:

was=0,代表不记录任何的语句;

was=1,代表记录执行时间超过slowms的语句

was=2,代表记录所有的语句

slowms代表语句的阈值,单位是ms

上图中的结果代表我们的实例会收集所有的查询语句。profile收集的查询语句结果存放在admin数据库中的system.profile集合中,可以通过下面的方法进行访问:

test1:PRIMARY> use admin
switched to db admin

test1:PRIMARY> db.system.profile.find({'op':'query'},{'op':1,'ns':1,'millis':1,'ts':1})
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:14.815Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.139Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.141Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.239Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.155Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.192Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.225Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.273Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.276Z") }

02 system.profile慢查询集合分析

   admin数据库中的system.profile是一个固定集合,保存着超过设置的慢查询的结果。我们来看里面的一条慢查询。

    利用下面的方法,来拿到一条数据,并对其中的关键字段进行注释说明:

test1:PRIMARY> db.system.profile.findOne({'op':'query'})
{
        "op" : "query",  # 操作类型
        "ns" : "admin.system.users",  # 命名空间
        "command" : {
                "find" : "system.users",
                "filter" : {
                        "_id" : "admin.root"  # 过滤的字段
                },
                "limit" : 1,
                "singleBatch" : true,
                "lsid" : {
                        "id" : UUID("a6034f5e-77c1-4b19-9669-60e1253edf4b")
                },
                "$readPreference" : {
                        "mode" : "secondaryPreferred"
                },
                "$db" : "admin"
        },
        "keysExamined" : 1,   # 扫描的索引数
        "docsExamined" : 1,   # 扫描的行数
        "cursorExhausted" : true,  
        "numYield" : 0,
        "nreturned" : 1,   # 返回的值的行数
        "locks" : {
                xxxx   #  锁信息
        },
        "flowControl" : {

        },
        "storage" : {
        },
        "responseLength" : 647,
        "protocol" : "op_query",
        "millis" : 0,    # 这个查询的执行时间,因为我们设置的profilestatus是0,因此所有操作都被记录了。
        "planSummary" : "IDHACK",  # 针对_id进行查询
        "execStats" : {   # 查询执行状态
                "stage" : "IDHACK",
                "nReturned" : 1,
                "executionTimeMillisEstimate" : 0,
                "works" : 2,
                "advanced" : 1,
                "needTime" : 0,
                "needYield" : 0,
                "saveState" : 0,
                "restoreState" : 0,
                "isEOF" : 1,
                "keysExamined" : 1,
                "docsExamined" : 1
        },
        "ts" : ISODate("2020-08-27T07:22:14.815Z"),
        "client" : "xx.xx.xx.xx",  # 查询的客户端IP地址
        "allUsers" : [   #  所有的用户信息
                {
                        "user" : "root",
                        "db" : "admin"
                }
        ],
        "user" : "root@admin"   # 使用的用户信息
}

03 慢查询分析利器---explain

   通常情况下,我们可以使用MongoDB的explain语法来分析一个语句的查询性能,包含是否用到索引、扫描行数等信息,explain语法的基本用法:

后置写法
db.system.profile.find({'op':'query'}).explain()
前置写法
db.system.profile.explain().find({'op':'query'})

其中,explain可以放在查询语句的后面或者前面,当然find语法也可以是update、remove、insert

explain语法的输出分为3种不同的详细程度,分别如下:

三种清晰度模式,清晰度越高,则输出的信息越全,默认情况下是queryPlanner:

1、queryPlanner模式(默认)
db.products.explain().count( { quantity: { $gt: 50 } } )

2、executionStats模式
db.products.explain("executionStats").count( { quantity: { $gt: 50 } } )

3、allPlansExecution模式
db.products.explain("allPlansExecution").count( { quantity: { $gt: 50 } } )

其中,allPlansExecution模式输出的信息最多。

下面是一个explain语法的输出内容,查询的SQL如下:

db.getCollection('files').find(
{"cTime":{
           "$gte":ISODate("2021-04-18"),
           "$lt":ISODate("2021-04-19")
       }}).limit(1000).explain("allPlansExecution")

输出的结果如下:

{
        "queryPlanner" : {   # 代表查询的执行计划
                "plannerVersion" : 1,   # 版本号
                "namespace" : "fs.files",   # 查询的命名空间,也就是集合名称
                "indexFilterSet" : false,   # 是否使用了索引过滤,注意,它并不能判定是否使用了索引
                "parsedQuery" : {    # 查询语法解析树
                        "$and" : [
                                {
                                        "cTime" : {
                                                "$lt" : ISODate("2021-04-19T00:00:00Z")
                                        }
                                },
                                {
                                        "cTime" : {
                                                "$gte" : ISODate("2021-04-18T00:00:00Z")
                                        }
                                }
                        ]
                },
                "winningPlan" : {    # 最终选择的查询计划
                        "stage" : "LIMIT",   # 查询的阶段,很重要,下面详细介绍
                        "limitAmount" : 1000,   # 查询结果的limit值
                        "inputStage" : {
                                "stage" : "FETCH",
                                "inputStage" : {
                                        "stage" : "IXSCAN",  # 代表索引扫描
                                        "keyPattern" : {
                                                "cTime" : 1
                                        },
                                        "indexName" : "cTime_1",  #  索引名称
                                        "isMultiKey" : false,    # 下面4个字段都是索引类型分析
                                        "isUnique" : false,
                                        "isSparse" : false,
                                        "isPartial" : false,
                                        "indexVersion" : 1,
                                        "direction" : "forward",
                                        "indexBounds" : {
                                                "cTime" : [
                                                        "[new Date(1618704000000), new Date(1618790400000))"
                                                ]
                                        }
                                }
                        }
                },
                "rejectedPlans" : [ ]  # 候选的没被选中的查询计划
        },
        "serverInfo" : {
                "host" : "xxxx",
                "port" : 24999,
                "version" : "3.2.8",
                "gitVersion" : "ed70e33130c977bda0024c125b56d159573dbaf0"
        },
        "ok" : 1
}

首先解释下stage的几个阶段:

  1. COLLSCAN---全表扫描
  2. IXSCAN---索引扫描
  3. FETCH---根据索引去检索文档
  4. SHARD_MERGE---合并分片结果
  5. IDHACK---针对id进行查询
  6. LIMIT---执行limit

了解了这些stage的阶段之后,我们可以看到,一个查询的过程是一层一层解析的,所以可以看到,stage这个字段有嵌套的情况。winningPlan中的执行计划也是按照一层一层的顺序去执行:

1、先执行最内层的索引扫描(IXSCAN);

2、再执行外面的FETCH,根据索引去拿文档

3、执行最后一步的limit,取指定数目个结果返回给客户端

以上就是MongoDB profile分析慢查询的示例的详细内容,更多关于MongoDB profile分析慢查询的资料请关注三水点靠木其它相关文章!

MongoDB 相关文章推荐
MongoDB使用profile分析慢查询的步骤
Apr 30 MongoDB
MongoDB数据库的安装步骤
Jun 18 MongoDB
MongoDB orm框架的注意事项及简单使用
Jun 20 MongoDB
常用的MongoDB查询语句的示例代码
Jul 25 MongoDB
mongodb数据库迁移变更的解决方案
Sep 04 MongoDB
MongoDB日志切割的三种方式总结
Sep 15 MongoDB
centos8安装MongoDB的详细过程
Oct 24 MongoDB
MongoDB连接数据库并创建数据等使用方法
Nov 27 MongoDB
一次线上mongo慢查询问题排查处理记录
Mar 18 MongoDB
MongoDB误操作后使用oplog恢复数据
Apr 11 MongoDB
SpringBoot集成MongoDB实现文件上传的步骤
Apr 18 MongoDB
Mongodb 迁移数据块的流程介绍分析
Apr 18 MongoDB
MongoDB balancer的使用详解
Apr 30 #MongoDB
MongoDB数据库的安装步骤
Jun 18 #MongoDB
MongoDB数据库常用的10条操作命令
Jun 18 #MongoDB
MongoDB 常用的crud操作语句
Jun 20 #MongoDB
MongoDB orm框架的注意事项及简单使用
Jun 20 #MongoDB
详解MongoDB的条件查询和排序
Jun 23 #MongoDB
SpringBoot整合MongoDB的实现步骤
Jun 23 #MongoDB
You might like
php中调用其他系统http接口的方法说明
2014/02/28 PHP
PHP判断网络文件是否存在的方法
2015/03/12 PHP
PHP Class SoapClient not found解决方法
2018/01/20 PHP
关于javascript 回调函数中变量作用域的讨论
2009/09/11 Javascript
javascript window对象属性整理
2009/10/24 Javascript
Javascript倒计时代码
2010/08/12 Javascript
jQuery数据显示插件整合实现代码
2011/10/24 Javascript
jQuery的one()方法用法实例
2015/01/19 Javascript
JS 实现计算器详解及实例代码(一)
2017/01/08 Javascript
JavaScript表单即时验证 验证不成功不能提交
2017/08/31 Javascript
从源码看angular/material2 中 dialog模块的实现方法
2017/10/18 Javascript
ES6学习笔记之map、set与数组、对象的对比
2018/03/01 Javascript
vue.js将时间戳转化为日期格式的实现代码
2018/06/05 Javascript
react中使用css的7中方式(最全总结)
2019/02/11 Javascript
JavaScript中的 new 命令
2019/05/22 Javascript
如何用webpack4.0撸单页/多页脚手架 (jquery, react, vue, typescript)
2019/06/18 jQuery
微信小程序服务器日期格式化问题
2020/01/07 Javascript
python中mechanize库的简单使用示例
2014/01/10 Python
Python使用百度API上传文件到百度网盘代码分享
2014/11/08 Python
Python实现堆排序的方法详解
2016/05/03 Python
Python文件夹与文件的相关操作(推荐)
2016/07/25 Python
Python2.7下安装Scrapy框架步骤教程
2017/12/22 Python
Python matplotlib学习笔记之坐标轴范围
2019/06/28 Python
python 执行终端/控制台命令的例子
2019/07/12 Python
python mongo 向数据中的数组类型新增数据操作
2020/12/05 Python
美国领先的汽车轮胎和轮毂供应商:TireBuyer
2016/07/21 全球购物
Joules美国官网:出色的英国风格
2017/10/30 全球购物
房地产销售员的自我评价分享
2013/12/04 职场文书
旅游专业职业生涯规划范文
2014/01/13 职场文书
个人委托书格式
2014/04/04 职场文书
企业安全生产标语
2014/06/06 职场文书
2014最新开业庆典策划方案(5篇)
2014/09/15 职场文书
会计求职自荐信
2015/03/26 职场文书
部门2015年度工作总结
2015/04/29 职场文书
2016应届毕业生就业指导课心得体会
2016/01/15 职场文书
交互式可视化js库gojs使用介绍及技巧
2022/02/18 Javascript