tensorflow实现残差网络方式(mnist数据集)


Posted in Python onMay 26, 2020

介绍

残差网络是何凯明大神的神作,效果非常好,深度可以达到1000层。但是,其实现起来并没有那末难,在这里以tensorflow作为框架,实现基于mnist数据集上的残差网络,当然只是比较浅层的。

如下图所示:

tensorflow实现残差网络方式(mnist数据集)

实线的Connection部分,表示通道相同,如上图的第一个粉色矩形和第三个粉色矩形,都是3x3x64的特征图,由于通道相同,所以采用计算方式为H(x)=F(x)+x

虚线的的Connection部分,表示通道不同,如上图的第一个绿色矩形和第三个绿色矩形,分别是3x3x64和3x3x128的特征图,通道不同,采用的计算方式为H(x)=F(x)+Wx,其中W是卷积操作,用来调整x维度的。

根据输入和输出尺寸是否相同,又分为identity_block和conv_block,每种block有上图两种模式,三卷积和二卷积,三卷积速度更快些,因此在这里选择该种方式。

具体实现见如下代码:

#tensorflow基于mnist数据集上的VGG11网络,可以直接运行
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#tensorflow基于mnist实现VGG11
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#x=mnist.train.images
#y=mnist.train.labels
#X=mnist.test.images
#Y=mnist.test.labels
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32, [None, 10])
sess = tf.InteractiveSession()

def weight_variable(shape):
#这里是构建初始变量
 initial = tf.truncated_normal(shape, mean=0,stddev=0.1)
#创建变量
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#在这里定义残差网络的id_block块,此时输入和输出维度相同
def identity_block(X_input, kernel_size, in_filter, out_filters, stage, block):
 """
 Implementation of the identity block as defined in Figure 3

 Arguments:
 X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
 kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
 filters -- python list of integers, defining the number of filters in the CONV layers of the main path
 stage -- integer, used to name the layers, depending on their position in the network
 block -- string/character, used to name the layers, depending on their position in the network
 training -- train or test

 Returns:
 X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
 """

 # defining name basis
 block_name = 'res' + str(stage) + block
 f1, f2, f3 = out_filters
 with tf.variable_scope(block_name):
  X_shortcut = X_input

  #first
  W_conv1 = weight_variable([1, 1, in_filter, f1])
  X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
  b_conv1 = bias_variable([f1])
  X = tf.nn.relu(X+ b_conv1)

  #second
  W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2])
  X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
  b_conv2 = bias_variable([f2])
  X = tf.nn.relu(X+ b_conv2)

  #third

  W_conv3 = weight_variable([1, 1, f2, f3])
  X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='SAME')
  b_conv3 = bias_variable([f3])
  X = tf.nn.relu(X+ b_conv3)
  #final step
  add = tf.add(X, X_shortcut)
  b_conv_fin = bias_variable([f3])
  add_result = tf.nn.relu(add+b_conv_fin)

 return add_result


#这里定义conv_block模块,由于该模块定义时输入和输出尺度不同,故需要进行卷积操作来改变尺度,从而得以相加
def convolutional_block( X_input, kernel_size, in_filter,
    out_filters, stage, block, stride=2):
 """
 Implementation of the convolutional block as defined in Figure 4

 Arguments:
 X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
 kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
 filters -- python list of integers, defining the number of filters in the CONV layers of the main path
 stage -- integer, used to name the layers, depending on their position in the network
 block -- string/character, used to name the layers, depending on their position in the network
 training -- train or test
 stride -- Integer, specifying the stride to be used

 Returns:
 X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
 """

 # defining name basis
 block_name = 'res' + str(stage) + block
 with tf.variable_scope(block_name):
  f1, f2, f3 = out_filters

  x_shortcut = X_input
  #first
  W_conv1 = weight_variable([1, 1, in_filter, f1])
  X = tf.nn.conv2d(X_input, W_conv1,strides=[1, stride, stride, 1],padding='SAME')
  b_conv1 = bias_variable([f1])
  X = tf.nn.relu(X + b_conv1)

  #second
  W_conv2 =weight_variable([kernel_size, kernel_size, f1, f2])
  X = tf.nn.conv2d(X, W_conv2, strides=[1,1,1,1], padding='SAME')
  b_conv2 = bias_variable([f2])
  X = tf.nn.relu(X+b_conv2)

  #third
  W_conv3 = weight_variable([1,1, f2,f3])
  X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1,1], padding='SAME')
  b_conv3 = bias_variable([f3])
  X = tf.nn.relu(X+b_conv3)
  #shortcut path
  W_shortcut =weight_variable([1, 1, in_filter, f3])
  x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID')

  #final
  add = tf.add(x_shortcut, X)
  #建立最后融合的权重
  b_conv_fin = bias_variable([f3])
  add_result = tf.nn.relu(add+ b_conv_fin)


 return add_result



x = tf.reshape(x, [-1,28,28,1])
w_conv1 = weight_variable([2, 2, 1, 64])
x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='SAME')
b_conv1 = bias_variable([64])
x = tf.nn.relu(x+b_conv1)
#这里操作后变成14x14x64
x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
    strides=[1, 1, 1, 1], padding='SAME')


#stage 2
x = convolutional_block(X_input=x, kernel_size=3, in_filter=64, out_filters=[64, 64, 256], stage=2, block='a', stride=1)
#上述conv_block操作后,尺寸变为14x14x256
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b' )
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c')
#上述操作后张量尺寸变成14x14x256
x = tf.nn.max_pool(x, [1, 2, 2, 1], strides=[1,2,2,1], padding='SAME')
#变成7x7x256
flat = tf.reshape(x, [-1,7*7*256])

w_fc1 = weight_variable([7 * 7 *256, 1024])
b_fc1 = bias_variable([1024])

h_fc1 = tf.nn.relu(tf.matmul(flat, w_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2


#建立损失函数,在这里采用交叉熵函数
cross_entropy = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv))

train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#初始化变量

sess.run(tf.global_variables_initializer())

print("cuiwei")
for i in range(2000):
 batch = mnist.train.next_batch(10)
 if i%100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
 x:batch[0], y: batch[1], keep_prob: 1.0})
 print("step %d, training accuracy %g"%(i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5})

以上这篇tensorflow实现残差网络方式(mnist数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python搭建简易服务器分析与实现
Dec 15 Python
python转换摩斯密码示例
Feb 16 Python
Python随机读取文件实现实例
May 25 Python
Python实现读取txt文件并画三维图简单代码示例
Dec 09 Python
python贪婪匹配以及多行匹配的实例讲解
Apr 19 Python
python实现计数排序与桶排序实例代码
Mar 28 Python
OpenCV-Python 摄像头实时检测人脸代码实例
Apr 30 Python
用python3 urllib破解有道翻译反爬虫机制详解
Aug 14 Python
python接口自动化如何封装获取常量的类
Dec 24 Python
Python Tornado实现WEB服务器Socket服务器共存并实现交互的方法
May 26 Python
python 逆向爬虫正确调用 JAR 加密逻辑
Jan 12 Python
python对文档中元素删除,替换操作
Apr 02 Python
Python中格式化字符串的四种实现
May 26 #Python
使用tensorflow实现VGG网络,训练mnist数据集方式
May 26 #Python
浅谈Tensorflow加载Vgg预训练模型的几个注意事项
May 26 #Python
Tensorflow加载Vgg预训练模型操作
May 26 #Python
PyQt5如何将.ui文件转换为.py文件的实例代码
May 26 #Python
TensorFlow实现模型断点训练,checkpoint模型载入方式
May 26 #Python
python 日志模块 日志等级设置失效的解决方案
May 26 #Python
You might like
超级简单的php+mysql留言本源码
2009/11/11 PHP
解决php使用异步调用获取数据时出现(错误c00ce56e导致此项操作无法完成)
2013/07/03 PHP
php实例分享之二维数组排序
2014/05/15 PHP
php实现的双向队列类实例
2014/09/24 PHP
谈谈PHP连接Access数据库的注意事项
2016/08/12 PHP
PHP观察者模式示例【Laravel框架中有用到】
2018/06/15 PHP
php写入mysql中文乱码的实例解决方法
2019/09/17 PHP
js自定义事件代码说明
2011/01/31 Javascript
jquery div 居中技巧应用介绍
2012/11/24 Javascript
Javascript实现关联数据(Linked Data)查询及注意细节
2013/02/22 Javascript
js编码、解码函数介绍及其使用示例
2013/09/05 Javascript
js在IE与firefox的差异集锦
2014/11/11 Javascript
jQuery实现带有洗牌效果的动画分页实例
2015/08/31 Javascript
jquery.validate提示错误信息位置方法
2016/01/22 Javascript
对jQuary选择器的全面总结
2016/06/20 Javascript
jQuery弹出层插件popShow用法示例
2017/01/23 Javascript
BootStrap表单控件之复选框checkbox和单选择按钮radio
2017/05/23 Javascript
javascript字体颜色控件的开发 JS实现字体控制
2017/11/27 Javascript
Python PyQt5实现的简易计算器功能示例
2017/08/23 Python
django输出html内容的实例
2018/05/27 Python
基于python进行桶排序与基数排序的总结
2018/05/29 Python
浅谈Python中eval的强大与危害
2019/03/13 Python
树莓派动作捕捉抓拍存储图像脚本
2019/06/22 Python
django 利用Q对象与F对象进行查询的实现
2020/05/15 Python
HTML5+JS实现俄罗斯方块原理及具体步骤
2013/11/29 HTML / CSS
详解HTML5 Canvas绘制时指定颜色与透明度的方法
2016/03/25 HTML / CSS
Philosophy美国官网:美国美容品牌
2016/08/15 全球购物
Sport-Thieme荷兰:购买体育用品
2019/08/25 全球购物
工程力学硕士生的自我评价范文
2013/11/16 职场文书
养殖人员的创业计划书范文
2013/12/26 职场文书
九年级体育教学反思
2014/01/23 职场文书
大学生家政服务项目创业计划书
2014/01/30 职场文书
同意报考证明
2015/06/17 职场文书
青年岗位能手事迹材料(2016推荐版)
2016/03/01 职场文书
2016年清明节网上祭英烈活动总结
2016/04/01 职场文书
青年人初次创业的“五不要”
2019/08/23 职场文书