tensorflow实现残差网络方式(mnist数据集)


Posted in Python onMay 26, 2020

介绍

残差网络是何凯明大神的神作,效果非常好,深度可以达到1000层。但是,其实现起来并没有那末难,在这里以tensorflow作为框架,实现基于mnist数据集上的残差网络,当然只是比较浅层的。

如下图所示:

tensorflow实现残差网络方式(mnist数据集)

实线的Connection部分,表示通道相同,如上图的第一个粉色矩形和第三个粉色矩形,都是3x3x64的特征图,由于通道相同,所以采用计算方式为H(x)=F(x)+x

虚线的的Connection部分,表示通道不同,如上图的第一个绿色矩形和第三个绿色矩形,分别是3x3x64和3x3x128的特征图,通道不同,采用的计算方式为H(x)=F(x)+Wx,其中W是卷积操作,用来调整x维度的。

根据输入和输出尺寸是否相同,又分为identity_block和conv_block,每种block有上图两种模式,三卷积和二卷积,三卷积速度更快些,因此在这里选择该种方式。

具体实现见如下代码:

#tensorflow基于mnist数据集上的VGG11网络,可以直接运行
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#tensorflow基于mnist实现VGG11
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#x=mnist.train.images
#y=mnist.train.labels
#X=mnist.test.images
#Y=mnist.test.labels
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32, [None, 10])
sess = tf.InteractiveSession()

def weight_variable(shape):
#这里是构建初始变量
 initial = tf.truncated_normal(shape, mean=0,stddev=0.1)
#创建变量
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#在这里定义残差网络的id_block块,此时输入和输出维度相同
def identity_block(X_input, kernel_size, in_filter, out_filters, stage, block):
 """
 Implementation of the identity block as defined in Figure 3

 Arguments:
 X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
 kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
 filters -- python list of integers, defining the number of filters in the CONV layers of the main path
 stage -- integer, used to name the layers, depending on their position in the network
 block -- string/character, used to name the layers, depending on their position in the network
 training -- train or test

 Returns:
 X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
 """

 # defining name basis
 block_name = 'res' + str(stage) + block
 f1, f2, f3 = out_filters
 with tf.variable_scope(block_name):
  X_shortcut = X_input

  #first
  W_conv1 = weight_variable([1, 1, in_filter, f1])
  X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
  b_conv1 = bias_variable([f1])
  X = tf.nn.relu(X+ b_conv1)

  #second
  W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2])
  X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
  b_conv2 = bias_variable([f2])
  X = tf.nn.relu(X+ b_conv2)

  #third

  W_conv3 = weight_variable([1, 1, f2, f3])
  X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='SAME')
  b_conv3 = bias_variable([f3])
  X = tf.nn.relu(X+ b_conv3)
  #final step
  add = tf.add(X, X_shortcut)
  b_conv_fin = bias_variable([f3])
  add_result = tf.nn.relu(add+b_conv_fin)

 return add_result


#这里定义conv_block模块,由于该模块定义时输入和输出尺度不同,故需要进行卷积操作来改变尺度,从而得以相加
def convolutional_block( X_input, kernel_size, in_filter,
    out_filters, stage, block, stride=2):
 """
 Implementation of the convolutional block as defined in Figure 4

 Arguments:
 X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
 kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
 filters -- python list of integers, defining the number of filters in the CONV layers of the main path
 stage -- integer, used to name the layers, depending on their position in the network
 block -- string/character, used to name the layers, depending on their position in the network
 training -- train or test
 stride -- Integer, specifying the stride to be used

 Returns:
 X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
 """

 # defining name basis
 block_name = 'res' + str(stage) + block
 with tf.variable_scope(block_name):
  f1, f2, f3 = out_filters

  x_shortcut = X_input
  #first
  W_conv1 = weight_variable([1, 1, in_filter, f1])
  X = tf.nn.conv2d(X_input, W_conv1,strides=[1, stride, stride, 1],padding='SAME')
  b_conv1 = bias_variable([f1])
  X = tf.nn.relu(X + b_conv1)

  #second
  W_conv2 =weight_variable([kernel_size, kernel_size, f1, f2])
  X = tf.nn.conv2d(X, W_conv2, strides=[1,1,1,1], padding='SAME')
  b_conv2 = bias_variable([f2])
  X = tf.nn.relu(X+b_conv2)

  #third
  W_conv3 = weight_variable([1,1, f2,f3])
  X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1,1], padding='SAME')
  b_conv3 = bias_variable([f3])
  X = tf.nn.relu(X+b_conv3)
  #shortcut path
  W_shortcut =weight_variable([1, 1, in_filter, f3])
  x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID')

  #final
  add = tf.add(x_shortcut, X)
  #建立最后融合的权重
  b_conv_fin = bias_variable([f3])
  add_result = tf.nn.relu(add+ b_conv_fin)


 return add_result



x = tf.reshape(x, [-1,28,28,1])
w_conv1 = weight_variable([2, 2, 1, 64])
x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='SAME')
b_conv1 = bias_variable([64])
x = tf.nn.relu(x+b_conv1)
#这里操作后变成14x14x64
x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
    strides=[1, 1, 1, 1], padding='SAME')


#stage 2
x = convolutional_block(X_input=x, kernel_size=3, in_filter=64, out_filters=[64, 64, 256], stage=2, block='a', stride=1)
#上述conv_block操作后,尺寸变为14x14x256
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b' )
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c')
#上述操作后张量尺寸变成14x14x256
x = tf.nn.max_pool(x, [1, 2, 2, 1], strides=[1,2,2,1], padding='SAME')
#变成7x7x256
flat = tf.reshape(x, [-1,7*7*256])

w_fc1 = weight_variable([7 * 7 *256, 1024])
b_fc1 = bias_variable([1024])

h_fc1 = tf.nn.relu(tf.matmul(flat, w_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2


#建立损失函数,在这里采用交叉熵函数
cross_entropy = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv))

train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#初始化变量

sess.run(tf.global_variables_initializer())

print("cuiwei")
for i in range(2000):
 batch = mnist.train.next_batch(10)
 if i%100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
 x:batch[0], y: batch[1], keep_prob: 1.0})
 print("step %d, training accuracy %g"%(i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5})

以上这篇tensorflow实现残差网络方式(mnist数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之玩转字符串(2)更新篇
Sep 28 Python
收集的几个Python小技巧分享
Nov 22 Python
Python中AND、OR的一个使用小技巧
Feb 18 Python
把MySQL表结构映射为Python中的对象的教程
Apr 07 Python
详解Python如何获取列表(List)的中位数
Aug 12 Python
在 Python 应用中使用 MongoDB的方法
Jan 05 Python
Python设计实现的计算器功能完整实例
Aug 18 Python
python音频处理用到的操作的示例代码
Oct 27 Python
wxPython之解决闪烁的问题
Jan 15 Python
Python实现的端口扫描功能示例
Apr 08 Python
基于python 处理中文路径的终极解决方法
Apr 12 Python
python3 打印输出字典中特定的某个key的方法示例
Jul 06 Python
Python中格式化字符串的四种实现
May 26 #Python
使用tensorflow实现VGG网络,训练mnist数据集方式
May 26 #Python
浅谈Tensorflow加载Vgg预训练模型的几个注意事项
May 26 #Python
Tensorflow加载Vgg预训练模型操作
May 26 #Python
PyQt5如何将.ui文件转换为.py文件的实例代码
May 26 #Python
TensorFlow实现模型断点训练,checkpoint模型载入方式
May 26 #Python
python 日志模块 日志等级设置失效的解决方案
May 26 #Python
You might like
用PHP的超级变量$_GET获取HTML表单(Form) 数据
2011/05/07 PHP
PHP版 汉字转码的实现详解
2013/06/09 PHP
php中文验证码实现方法
2015/06/18 PHP
PHP中递归的实现实例详解
2017/11/14 PHP
laravel邮件发送的实现代码示例
2020/01/31 PHP
精解window.setTimeout()&window.setInterval()使用方式与参数传递问题!
2007/11/23 Javascript
用JQuery调用Session的实现代码
2010/10/29 Javascript
不使用中间变量,交换int型的 a, b两个变量的值。
2010/10/29 Javascript
如何解决Jquery库及其他库之间的$命名冲突
2013/09/15 Javascript
js获得参数的getParameter使用示例
2014/02/26 Javascript
jQuery操作DOM之获取表单控件的值
2015/01/23 Javascript
director.js实现前端路由使用实例
2015/02/03 Javascript
js实现数字每三位加逗号的方法
2015/02/05 Javascript
JavaScript是如何实现继承的(六种方式)
2016/03/31 Javascript
bootstrap滚动监控器使用方法解析
2017/01/13 Javascript
Javascript 详解封装from表单数据为json串进行ajax提交
2017/03/29 Javascript
深入理解js 中async 函数的含义和用法
2018/05/13 Javascript
Swiper 4.x 使用方法(移动端网站的内容触摸滑动)
2018/05/17 Javascript
基于Vue+elementUI实现动态表单的校验功能(根据条件动态切换校验格式)
2019/04/04 Javascript
countUp.js实现数字滚动效果
2019/10/18 Javascript
vue 在服务器端直接修改请求的接口地址
2020/12/19 Vue.js
[01:04:30]Fnatic vs Mineski 2018国际邀请赛小组赛BO2 第二场 8.17
2018/08/18 DOTA
详解pyqt5 动画在QThread线程中无法运行问题
2018/05/05 Python
对python制作自己的数据集实例讲解
2018/12/12 Python
如何在django里上传csv文件并进行入库处理的方法
2019/01/02 Python
解决PyCharm不运行脚本,而是运行单元测试的问题
2019/01/17 Python
Python跳出多重循环的方法示例
2019/07/03 Python
Python3 sys.argv[ ]用法详解
2019/10/24 Python
Numpy与Pytorch 矩阵操作方式
2019/12/27 Python
Python3标准库之threading进程中管理并发操作方法
2020/03/30 Python
Python threading模块condition原理及运行流程详解
2020/10/05 Python
彼得罗夫美国官网:Peter Thomas Roth美国(青瓜面膜)
2017/11/05 全球购物
中秋联欢会主持词
2015/07/04 职场文书
会计实训总结范文
2015/08/03 职场文书
Vue项目中如何封装axios(统一管理http请求)
2021/05/02 Vue.js
springboot如何接收application/x-www-form-urlencoded类型的请求
2021/11/02 Java/Android