Tensorflow中的降维函数tf.reduce_*使用总结


Posted in Python onApril 20, 2020

在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总

1.tf.reduce_sum

tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.sum

功能:

此函数计算一个张量的各个维度上元素的总和。

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x) # 6
tf.reduce_sum(x, 0) # [2, 2, 2]
tf.reduce_sum(x, 1) # [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]]
tf.reduce_sum(x, [0, 1]) # 6

2.reduce_min

reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.min

功能:

tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。 

说明:

同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

3.reduce_max

reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为 None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.max。

功能:

计算一个张量的各个维度上元素的最大值。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

4.reduce_mean

reduce_mean

5.reduce_all

reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的不支持使用的名称。

返回:

该函数返回减少的张量,相当于np.mean

功能:

计算张量的各个维度上的元素的平均值。

说明:

axis是tf.reduce_mean函数中的参数,按照函数中axis给定的维度减少input_tensor。除非keep_dims是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。 如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x) # 1.5
tf.reduce_mean(x, 0) # [1.5, 1.5]
tf.reduce_mean(x, 1) # [1., 2.]

6.reduce_any

reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的布尔张量。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的已经弃用的名称。

返回:

减少张量,相当于np.any

功能:

在张量的维度上计算元素的 "逻辑或"。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是 true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。如果axis没有条目,则会减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[True, True], [False, False]])
tf.reduce_any(x) # True
tf.reduce_any(x, 0) # [True, True]
tf.reduce_any(x, 1) # [True, False]

7.reduce_logsumexp

reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:张量减少。应该有数字类型。
  • axis:要减小的维度。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的弃用名称。

返回:

减少的张量。

功能:

计算log(sum(exp(张量的各维数的元素)))。 

说明:

按照给定的axis上的维度减少input_tensor。除非keep_dims是true,否则张量的秩在axis上的每一项都减少1。如果keep_dims为 true,则减少的尺寸将保留为1。如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。这个函数在数值上比 log(sum(exp(input)))更稳定。它避免了大量输入的 exp 引起的溢出和小输入日志带来的下溢。

举例:

x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
tf.reduce_logsumexp(x) # log(6)
tf.reduce_logsumexp(x, 0) # [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) # [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) # [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) # log(6)

8.reduce_prod

reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则将缩小所有尺寸。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

结果返回减少的张量,相当于np.prod

功能:

此函数计算一个张量的各个维度上元素的乘积。 

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

到此这篇关于Tensorflow中的降维函数tf.reduce_*使用总结的文章就介绍到这了,更多相关Tensorflow 降维函数tf.reduce_*内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python入门篇之条件、循环
Oct 17 Python
python 捕获shell脚本的输出结果实例
Jan 04 Python
Python实现PS滤镜的万花筒效果示例
Jan 23 Python
python+ffmpeg视频并发直播压力测试
Mar 06 Python
unittest+coverage单元测试代码覆盖操作实例详解
Apr 04 Python
Python基于TCP实现会聊天的小机器人功能示例
Apr 09 Python
Python装饰器用法实例总结
May 26 Python
解决Pycharm下面出现No R interpreter defined的问题
Oct 29 Python
python获取交互式ssh shell的方法
Feb 14 Python
Python的互斥锁与信号量详解
Sep 12 Python
使用python turtle画高达
Jan 19 Python
Python实现文字pdf转换图片pdf效果
Apr 03 Python
Python yield生成器和return对比代码实例
Apr 20 #Python
jupyter notebook tensorflow打印device信息实例
Apr 20 #Python
解决Jupyter notebook更换主题工具栏被隐藏及添加目录生成插件问题
Apr 20 #Python
jupyter 中文乱码设置编码格式 避免控制台输出的解决
Apr 20 #Python
Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的
Apr 20 #Python
python argparse模块通过后台传递参数实例
Apr 20 #Python
TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的
Apr 20 #Python
You might like
定制404错误页面,并发信给管理员的程序
2006/10/09 PHP
用phpmyadmin更改mysql5.0登录密码
2008/03/25 PHP
php删除页面记录 同时刷新页面 删除条件用GET方式获得
2012/01/10 PHP
详解Laravel视图间共享数据与视图Composer
2016/08/04 PHP
如何修改Laravel中url()函数生成URL的根地址
2017/08/11 PHP
jQuery实现用方向键控制层的上下左右移动
2013/01/13 Javascript
jquery操作下拉列表、文本框、复选框、单选框集合(收藏)
2014/01/08 Javascript
首页图片漂浮效果示例代码
2014/06/05 Javascript
JavaScript中获取纯正的undefined的方法
2016/03/06 Javascript
使用jQuery处理AJAX请求的基础学习教程
2016/05/10 Javascript
JavaScript必知必会(三) String .的方法来自何方
2016/06/08 Javascript
使用JavaScript判断手机浏览器是横屏还是竖屏问题
2016/08/02 Javascript
js中Number数字数值运算后值不对的解决方法
2017/02/28 Javascript
基于HTML5+JS实现本地图片裁剪并上传功能
2017/03/24 Javascript
关于vue.js v-bind 的一些理解和思考
2017/06/06 Javascript
vue实现点击图片放大效果
2017/08/15 Javascript
VUE2.0+Element-UI+Echarts封装的组件实例
2018/03/02 Javascript
微信小程序使用form表单获取输入框数据的实例代码
2018/05/17 Javascript
使用原生js编写一个简单的框选功能方法
2019/05/13 Javascript
javascript绘制简单钟表效果
2020/04/07 Javascript
JS 逻辑判断不要只知道用 if-else 和 switch条件判断(小技巧)
2020/05/27 Javascript
Vue this.$router.push(参数)实现页面跳转操作
2020/09/09 Javascript
pandas重新生成索引的方法
2018/11/06 Python
pandas筛选某列出现编码错误的解决方法
2018/11/07 Python
python获取url的返回信息方法
2018/12/17 Python
celery4+django2定时任务的实现代码
2018/12/23 Python
django实现日志按日期分割
2020/05/21 Python
css3利用transform变形结合事件完成扇形导航
2020/10/26 HTML / CSS
环境工程大学生自荐信
2013/10/21 职场文书
电气个人求职信范文
2014/02/04 职场文书
销售职业生涯规划范文
2014/03/14 职场文书
个人授权委托书范文
2014/09/21 职场文书
英语通知范文
2015/04/22 职场文书
指导教师推荐意见
2015/06/05 职场文书
2016元旦晚会主持词开场白和结束语
2015/12/04 职场文书
Pytorch中TensorBoard及torchsummary的使用详解
2021/05/12 Python