Tensorflow中的降维函数tf.reduce_*使用总结


Posted in Python onApril 20, 2020

在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总

1.tf.reduce_sum

tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.sum

功能:

此函数计算一个张量的各个维度上元素的总和。

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x) # 6
tf.reduce_sum(x, 0) # [2, 2, 2]
tf.reduce_sum(x, 1) # [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]]
tf.reduce_sum(x, [0, 1]) # 6

2.reduce_min

reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.min

功能:

tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。 

说明:

同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

3.reduce_max

reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为 None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.max。

功能:

计算一个张量的各个维度上元素的最大值。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

4.reduce_mean

reduce_mean

5.reduce_all

reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的不支持使用的名称。

返回:

该函数返回减少的张量,相当于np.mean

功能:

计算张量的各个维度上的元素的平均值。

说明:

axis是tf.reduce_mean函数中的参数,按照函数中axis给定的维度减少input_tensor。除非keep_dims是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。 如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x) # 1.5
tf.reduce_mean(x, 0) # [1.5, 1.5]
tf.reduce_mean(x, 1) # [1., 2.]

6.reduce_any

reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的布尔张量。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的已经弃用的名称。

返回:

减少张量,相当于np.any

功能:

在张量的维度上计算元素的 "逻辑或"。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是 true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。如果axis没有条目,则会减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[True, True], [False, False]])
tf.reduce_any(x) # True
tf.reduce_any(x, 0) # [True, True]
tf.reduce_any(x, 1) # [True, False]

7.reduce_logsumexp

reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:张量减少。应该有数字类型。
  • axis:要减小的维度。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的弃用名称。

返回:

减少的张量。

功能:

计算log(sum(exp(张量的各维数的元素)))。 

说明:

按照给定的axis上的维度减少input_tensor。除非keep_dims是true,否则张量的秩在axis上的每一项都减少1。如果keep_dims为 true,则减少的尺寸将保留为1。如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。这个函数在数值上比 log(sum(exp(input)))更稳定。它避免了大量输入的 exp 引起的溢出和小输入日志带来的下溢。

举例:

x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
tf.reduce_logsumexp(x) # log(6)
tf.reduce_logsumexp(x, 0) # [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) # [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) # [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) # log(6)

8.reduce_prod

reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则将缩小所有尺寸。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

结果返回减少的张量,相当于np.prod

功能:

此函数计算一个张量的各个维度上元素的乘积。 

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

到此这篇关于Tensorflow中的降维函数tf.reduce_*使用总结的文章就介绍到这了,更多相关Tensorflow 降维函数tf.reduce_*内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
举例区分Python中的浅复制与深复制
Jul 02 Python
详解python时间模块中的datetime模块
Jan 13 Python
linux平台使用Python制作BT种子并获取BT种子信息的方法
Jan 20 Python
简单实现Python爬取网络图片
Apr 01 Python
如何实现删除numpy.array中的行或列
May 08 Python
学习python可以干什么
Feb 26 Python
Python下opencv图像阈值处理的使用笔记
Aug 04 Python
Python函数式编程实例详解
Jan 17 Python
简单了解Python write writelines区别
Feb 27 Python
Flask模板引擎Jinja2使用实例
Apr 23 Python
基于python实现模拟数据结构模型
Jun 12 Python
小结Python的反射机制
Sep 28 Python
Python yield生成器和return对比代码实例
Apr 20 #Python
jupyter notebook tensorflow打印device信息实例
Apr 20 #Python
解决Jupyter notebook更换主题工具栏被隐藏及添加目录生成插件问题
Apr 20 #Python
jupyter 中文乱码设置编码格式 避免控制台输出的解决
Apr 20 #Python
Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的
Apr 20 #Python
python argparse模块通过后台传递参数实例
Apr 20 #Python
TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的
Apr 20 #Python
You might like
Google Voice 短信发送接口PHP开源版(2010.5更新)
2010/07/22 PHP
PHP版网站缓存加快打开速度的方法分享
2012/06/03 PHP
Yii2中关联查询简单用法示例
2016/08/10 PHP
Yii实现文章列表置顶功能示例
2016/10/18 PHP
php安装php_rar扩展实现rar文件读取和解压的方法
2016/11/17 PHP
YUI 读码日记之 YAHOO.lang.is*
2008/03/22 Javascript
javascript使用isNaN()函数判断变量是否为数字
2013/09/21 Javascript
使用JavaScript+canvas实现图片裁剪
2015/01/30 Javascript
JavaScript使用DeviceOne开发实战(三)仿微信应用
2015/12/02 Javascript
快速解决jquery.touchSwipe左右滑动和垂直滚动条冲突
2016/04/15 Javascript
JS简单实现自定义右键菜单实例
2017/05/31 Javascript
JS去掉字符串末尾的标点符号及删除最后一个字符的方法
2017/10/24 Javascript
JS实现读取xml内容并输出到div中的方法示例
2018/04/19 Javascript
对vue中v-if的常见使用方法详解
2018/09/28 Javascript
javascript数组去重方法总结(推荐)
2019/03/20 Javascript
[05:08]顺网杯ISS-DOTA2赛歌 少女偶像Lunar青春演绎
2013/12/05 DOTA
[50:29]2014 DOTA2华西杯精英邀请赛 5 24 DK VS iG
2014/05/26 DOTA
[03:09]2014DOTA2国际邀请赛 Mushi前队友送上祝福
2014/07/12 DOTA
Python Web框架Flask中使用新浪SAE云存储实例
2015/02/08 Python
Python爬取国外天气预报网站的方法
2015/07/10 Python
python之Character string(实例讲解)
2017/09/25 Python
Python实现的rsa加密算法详解
2018/01/24 Python
Python 实现字符串中指定位置插入一个字符
2018/05/02 Python
Python中如何导入类示例详解
2019/04/17 Python
Python K最近邻从原理到实现的方法
2019/08/15 Python
Pandas —— resample()重采样和asfreq()频度转换方式
2020/02/26 Python
pymysql之cur.fetchall() 和cur.fetchone()用法详解
2020/05/15 Python
CSS3 不定高宽垂直水平居中的几种方式
2020/03/26 HTML / CSS
北美三大旅游网站之一:Travelocity加拿大
2016/08/20 全球购物
大学毕业登记表自我鉴定
2013/10/09 职场文书
高中美术教学反思
2014/01/19 职场文书
2015年新教师工作总结
2015/04/28 职场文书
2015年环保局工作总结
2015/05/22 职场文书
闪闪的红星观后感
2015/06/08 职场文书
导游词之贵州百里杜鹃
2019/10/29 职场文书
以MySQL5.7为例了解一下执行计划
2022/04/13 MySQL