TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的


Posted in Python onApril 20, 2020

今天来介绍一下Tensorflow里面的反卷积操作,网上反卷积的用法的介绍比较少,希望这篇教程可以帮助到各位

反卷积出自这篇论文:Deconvolutional Networks,有兴趣的同学自行了解

首先无论你如何理解反卷积,请时刻记住一点,反卷积操作是卷积的反向

如果你随时都记住上面强调的重点,那你基本就理解一大半了,接下来通过一些函数的介绍为大家强化这个观念

conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)

除去name参数用以指定该操作的name,与方法有关的一共六个参数:
第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor
第二个参数filter:卷积核,它要求是一个Tensor,具有[filter_height, filter_width, out_channels, in_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,卷积核个数,图像通道数]
第三个参数output_shape:反卷积操作输出的shape,细心的同学会发现卷积操作是没有这个参数的,那这个参数在这里有什么用呢?下面会解释这个问题
第四个参数strides:反卷积时在图像每一维的步长,这是一个一维的向量,长度4
第五个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
第六个参数data_format:string类型的量,'NHWC'和'NCHW'其中之一,这是tensorflow新版本中新加的参数,它说明了value参数的数据格式。'NHWC'指tensorflow标准的数据格式[batch, height, width, in_channels],'NCHW'指Theano的数据格式,[batch, in_channels,height, width],当然默认值是'NHWC'

开始之前务必了解卷积的过程,参考我的另一篇文章:https://3water.com/article/177798.htm

首先定义一个单通道图和3个卷积核

x1 = tf.constant(1.0, shape=[1,3,3,1])
kernel = tf.constant(1.0, shape=[3,3,3,1])

先别着急!我们不直接用反卷积函数,而是再定义一些图

x2 = tf.constant(1.0, shape=[1,6,6,3])
x3 = tf.constant(1.0, shape=[1,5,5,3])

x2是6×6的3通道图,x3是5×5的3通道图
好了,接下来对x3做一次卷积操作

y2 = tf.nn.conv2d(x3, kernel, strides=[1,2,2,1], padding="SAME")

所以返回的y2是一个单通道的图,如果你了解卷积过程,很容易看出来y2是[1,3,3,1]的Tensor,y2的结果如下:

[[[[ 12.]
  [ 18.]
  [ 12.]]
 
 [[ 18.]
  [ 27.]
  [ 18.]]
 
 [[ 12.]
  [ 18.]
  [ 12.]]]]

又一个很重要的部分!tf.nn.conv2d中的filter参数,是[filter_height, filter_width, in_channels, out_channels]的形式,而tf.nn.conv2d_transpose中的filter参数,是[filter_height, filter_width, out_channels,in_channels]的形式,注意in_channels和out_channels反过来了!因为两者互为反向,所以输入输出要调换位置

既然y2是卷积操作的返回值,那我们当然可以对它做反卷积,反卷积操作返回的Tensor,应该和x3的shape是一样的(不难理解,因为是卷积的反过程)

y3 = tf.nn.conv2d_transpose(y2,kernel,output_shape=[1,5,5,3], strides=[1,2,2,1],padding="SAME")

好,现在返回的y3果然是[1,5,5,3]的Tensor,结果如下:

[[[[ 12. 12. 12.]
  [ 30. 30. 30.]
  [ 18. 18. 18.]
  [ 30. 30. 30.]
  [ 12. 12. 12.]]
 
 [[ 30. 30. 30.]
  [ 75. 75. 75.]
  [ 45. 45. 45.]
  [ 75. 75. 75.]
  [ 30. 30. 30.]]
 
 [[ 18. 18. 18.]
  [ 45. 45. 45.]
  [ 27. 27. 27.]
  [ 45. 45. 45.]
  [ 18. 18. 18.]]
 
 [[ 30. 30. 30.]
  [ 75. 75. 75.]
  [ 45. 45. 45.]
  [ 75. 75. 75.]
  [ 30. 30. 30.]]
 
 [[ 12. 12. 12.]
  [ 30. 30. 30.]
  [ 18. 18. 18.]
  [ 30. 30. 30.]
  [ 12. 12. 12.]]]]

这个结果是怎么得来的?可以用一张动图来说明,图片来源:反卷积的真正含义

TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的

看起来,tf.nn.conv2d_transpose的output_shape似乎是多余的,因为知道了原图,卷积核,步长显然是可以推出输出图像大小的,那为什么要指定output_shape呢?
看这样一种情况:

y4 = tf.nn.conv2d(x2, kernel, strides=[1,2,2,1], padding="SAME")

我们把上面的x2也做卷积,获得shape为[1,3,3,1]的y4如下:

[[[[ 27.]
  [ 27.]
  [ 18.]]
 
 [[ 27.]
  [ 27.]
  [ 18.]]
 
 [[ 18.]
  [ 18.]
  [ 12.]]]]

[1,6,6,3]和[1,5,5,3]的图经过卷积得到了相同的大小,[1,3,3,1]
让我们再反过来看,那么[1,3,3,1]的图反卷积后得到什么呢?产生了两种情况。所以这里指定output_shape是有意义的,当然随意指定output_shape是不允许的,如下情况程序会报错:

y5 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,10,10,3],strides=[1,2,2,1],padding="SAME")

以上是stride为2的情况,为1时也类似,当卷积核大于原图时,默认用VALID方式(用SAME就无意义了)参考下图:

程序清单:

import tensorflow as tf
 
x1 = tf.constant(1.0, shape=[1,3,3,1])
 
x2 = tf.constant(1.0, shape=[1,6,6,3])
 
x3 = tf.constant(1.0, shape=[1,5,5,3])
 
kernel = tf.constant(1.0, shape=[3,3,3,1])
 
 
 
y1 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,6,6,3],
  strides=[1,2,2,1],padding="SAME")
 
y2 = tf.nn.conv2d(x3, kernel, strides=[1,2,2,1], padding="SAME")
 
y3 = tf.nn.conv2d_transpose(y2,kernel,output_shape=[1,5,5,3],
  strides=[1,2,2,1],padding="SAME")
 
y4 = tf.nn.conv2d(x2, kernel, strides=[1,2,2,1], padding="SAME")
 
'''
Wrong!!This is impossible
y5 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,10,10,3],strides=[1,2,2,1],padding="SAME")
'''
sess = tf.Session()
tf.global_variables_initializer().run(session=sess)
x1_decov, x3_cov, y2_decov, x2_cov=sess.run([y1,y2,y3,y4])
print(x1_decov.shape)
print(x3_cov.shape)
print(y2_decov.shape)
print(x2_cov.shape)

到此这篇关于TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的 的文章就介绍到这了,更多相关TensorFlow tf.nn.conv2d_transpose 反卷积内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python的keyword模块用法实例分析
Jun 30 Python
python中根据字符串调用函数的实现方法
Jun 12 Python
python使用xlrd和xlwt读写Excel文件的实例代码
Sep 05 Python
python+splinter自动刷新抢票功能
Sep 25 Python
python自动化测试之异常及日志操作实例分析
Nov 09 Python
详解Python中的分支和循环结构
Feb 11 Python
python+selenium 脚本实现每天自动登记的思路详解
Mar 11 Python
python进度条显示之tqmd模块
Aug 22 Python
使用python-cv2实现Harr+Adaboost人脸识别的示例
Oct 27 Python
Python + opencv对拍照得到的图片进行背景去除的实现方法
Nov 18 Python
详解Go语言运用广度优先搜索走迷宫
Jun 23 Python
尝试使用Python爬取城市租房信息
Apr 12 Python
Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的
Apr 20 #Python
解决python脚本中error: unrecognized arguments: True错误
Apr 20 #Python
python argparse传入布尔参数false不生效的解决
Apr 20 #Python
parser.add_argument中的action使用
Apr 20 #Python
Python ArgumentParse的subparser用法说明
Apr 20 #Python
python列表的逆序遍历实现
Apr 20 #Python
python sitk.show()与imageJ结合使用常见的问题
Apr 20 #Python
You might like
社区(php&&mysql)六
2006/10/09 PHP
用windows下编译过的eAccelerator for PHP 5.1.6实现php加速的使用方法
2007/09/30 PHP
php设计模式之命令模式使用示例
2014/03/02 PHP
PHP产生不重复随机数的5个方法总结
2014/11/12 PHP
JS阻止冒泡事件以及默认事件发生的简单方法
2014/01/17 Javascript
jQuery根据ID获取input、checkbox、radio、select的示例
2014/08/11 Javascript
JavaScript获得表单target属性的方法
2015/04/02 Javascript
Javascript实现的简单右键菜单类
2015/09/23 Javascript
JavaScript判断FileUpload控件上传文件类型
2015/09/28 Javascript
简单实现JS对dom操作封装
2015/12/02 Javascript
基于BootStrap Metronic开发框架经验小结【一】框架总览及菜单模块的处理
2016/05/12 Javascript
javascript中数组(Array)对象和字符串(String)对象的常用方法总结
2016/12/15 Javascript
JS 实现计算器详解及实例代码(一)
2017/01/08 Javascript
JS验证码实现代码
2017/09/14 Javascript
webpack源码之loader机制详解
2018/04/06 Javascript
Vue SPA单页应用首屏优化实践
2018/06/28 Javascript
在vue.js中使用JSZip实现在前端解压文件的方法
2018/09/05 Javascript
JS数组中对象去重操作示例
2019/06/04 Javascript
简单了解JavaScript弹窗实现代码
2020/05/07 Javascript
[00:52]DOTA2齐天大圣预告片
2016/08/13 DOTA
python连接字符串的方法小结
2015/07/13 Python
Django实现自定义404,500页面教程
2017/03/26 Python
TENSORFLOW变量作用域(VARIABLE SCOPE)
2020/01/10 Python
python重要函数eval多种用法解析
2020/01/14 Python
Python 日期的转换及计算的具体使用详解
2020/01/16 Python
Python 窗体(tkinter)下拉列表框(Combobox)实例
2020/03/04 Python
Python按照list dict key进行排序过程解析
2020/04/04 Python
python 实现图片裁剪小工具
2021/02/02 Python
马来西亚在线购物市场:PGMall.my
2019/10/13 全球购物
两道JAVA笔试题
2016/09/14 面试题
2014年会演讲稿范文
2014/01/06 职场文书
员工合理化建议书
2014/05/19 职场文书
组工干部演讲稿
2014/09/02 职场文书
2014教师党员自我评议(5篇)
2014/09/20 职场文书
2016年优秀教师先进事迹材料
2016/02/26 职场文书
如何撰写创业策划书
2019/06/27 职场文书