python数据分析工具之 matplotlib详解


Posted in Python onApril 09, 2020

不论是数据挖掘还是数学建模,都免不了数据可视化的问题。对于 Python 来说,matplotlib 是最著名的绘图库,它主要用于二维绘图,当然也可以进行简单的三维绘图。它不但提供了一整套和 Matlab 相似但更为丰富的命令,让我们可以非常快捷地用 python 可视化数据。

matplotlib基础

# 安装
pip install matplotlib

两种绘图风格

MATLAB风格:

基本函数是 plot,分别取 x,y 的值,然后取到坐标(x,y)后,对不同的连续点进行连线。

面向对象:

创建一个图形 fig 和一个坐标 ax 。

  • fig:figure(plt.Figure) 是一个能容纳各种坐标轴,图形,文字和标签的容器。
  • ax:axes(plt.Axes) 是一个带有刻度和标签的矩形,最终会包含各种可视化元素。

示例:

import matplotlib.pyplot as plt
import numpy as np

# 图形显示风格
plt.style.use('seaborn-whitegrid')

# 创建fig和ax
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0,10,100)
# 显示sin函数图形
plt.plot(x, np.sin(x))
# 显示cos函数图形
plt.plot(x, np.cos(x))

plt.show()

python数据分析工具之 matplotlib详解

这就是利用面向对象的方式绘图,在交互模式中可以看到,每画一个图就是产生一个对象,最后再显示出来。

python数据分析工具之 matplotlib详解

绘图样式

python数据分析工具之 matplotlib详解

# 调整坐标轴上下限
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])

plt.axis([xmin, xmax, ymin, ymax])
# 参数:tight:把图形设置成紧凑模式,不留多余的部分
# equal:图形显示分辨率为1:1

线形图

文字设置

图形标题:plt.title

坐标轴标题:plt.xlabel, plt.ylabel

基础图例:plt.legend

注意:对中文不友好,需要额外方法,尽量使用英文

# 示例
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(1, 10, 100)
plt.plot(x, np.sin(x))
plt.title('sin-function')
plt.xlabel('x-value')
plt.ylabel('y-label')
plt.show()

python数据分析工具之 matplotlib详解

图例

通过legend可以设置图例,同时通过参数的调整可以细腻的设置图例的位置、形式等。参数主要包括:

  • loc:图例的位置
  • frameon:是否带边框
  • framealpha:颜色透明
  • shadow:阴影
# 示例
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(1, 10, 100)

fig, ax = plt.subplots()

ax.plot(x, np.sin(x), color='red', label='sin-function')
ax.plot(x, np.cos(x), color='blue', label='cos-function')

ax.legend(loc='upper right', frameon=True, shadow=True, framealpha=0.2)
# 设置图例位置为右上,有边框,有阴影,且透明度为0.2

plt.show()

python数据分析工具之 matplotlib详解

颜色条

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(1, 10, 100)
I = np.sin(x) * np.cos(x[:,np.newaxis])

plt.imshow(I)
plt.colorbar()
plt.show()

python数据分析工具之 matplotlib详解

散点图

散点图基础

散点图主要以点为主,数据是不连续的数据,通过设置线的型号来完成。型号包括‘o'、‘+'、‘*'、‘1'、‘h'、‘D'等等,具体使用探索一下就好,用不到太多。

import matplotlib.pyplot as plt
import numpy as np

# 图形显示风格
plt.style.use('seaborn-whitegrid')

x = np.linspace(0, 10, 30)
y = np.sin(x)

# 通过设置线型为点来完成散点图的绘制
plt.plot(x, y, 'o', color='blue')
plt.show()

python数据分析工具之 matplotlib详解

如果设置线型为点线结合,那么将绘制出连续的线,对应点处为所设置的点型。

画散点图还可以使用scatter函数来画,他有很多更细节的描述,用法与plot类似,对于数据量较大的可视化时,plot的效率更高一些。

误差线

import matplotlib.pyplot as plt
import numpy as np

# 图形显示风格
plt.style.use('seaborn-whitegrid')

x = np.linspace(0, 10, 30)
dy = x * 0.5
y = np.sin(x) + dy

plt.errorbar(x, y, yerr=dy, fmt='.k', ecolor='blue')
plt.show()

python数据分析工具之 matplotlib详解

连续误差线表示的是连续量,可以使用 plt.plot 和 plt.fill_between 来画出。

import matplotlib.pyplot as plt
import numpy as np

# 图形显示风格
plt.style.use('seaborn-whitegrid')

x = np.linspace(0, 10, 30)
ysin = np.sin(x)
ycos = np.cos(x)

plt.plot(x, ysin, color='red')
plt.plot(x, ycos, color='blue')

plt.fill_between(x, ysin, ycos, color='gray', alpha=0.2)
plt.show()

python数据分析工具之 matplotlib详解

等高线(密度)

  • plt.contour   等高线
  • plt.contourf  自带填充颜色
  • plt.imshow   显示图形

等高线绘制方法:z = f(x,y),z表示高度。当只有一个颜色绘图时,虚线表示负值,实线表示正值。meshgrid 可以将一维数据变成二维网格数据。

import matplotlib.pyplot as plt
import numpy as np

def f(x, y):
 return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

# 得到网格点矩阵
x, y =np.meshgrid(x, y)

# 计算z轴的值
z = f(x, y)

# 绘制图形
plt.contour(x, y, z, colors='green')
# plt.contour(x, y, z, 50, cmap='RdGy') # 更改配色,值50等分,红灰配色
plt.show()

python数据分析工具之 matplotlib详解

python数据分析工具之 matplotlib详解

plt.contourf(x, y, z, 50, cmap='RdGy') # 改为contourf,自动填充颜色,则变为连续的

python数据分析工具之 matplotlib详解

直方图

基本画法:plt.hist 可以直接画直方图,参数主要包括:

  • bins:划分段(柱数)
  • color:颜色
  • alpha:透明度
  • histtype:图类型
import matplotlib.pyplot as plt
import numpy as np

data = np.random.randn(1000)
plt.hist(data, bins=30, alpha=0.3, histtype='stepfilled', color='blue', edgecolor='none')
plt.show()

python数据分析工具之 matplotlib详解

程序中 random.randn random.rand 相比,randn表示随机生成的数符合正态分布,因此画出图来是如上图所示。

子图

plt.subplot(2,1,1) # 子图,(2,1,1)代表,创建2*1的画布,并且定位于画布1 ;等效于plt.subplot(211),即去掉逗号
# subplots 可以同时创建多个子图
figure,ax = plt.subplots(2, 3) 
# 这是一个灵活创建子图的方法,可以创建任意组合的图形,不必一一对齐,以下为示例:
grid = plt.GridSpec(2, 3, wspace=0.3, hspace=0.2)
plt.subplot(grid[,:2])
plt.subplot(grid[1,1:3])

python数据分析工具之 matplotlib详解

图例配置

文字注释

通过不同的坐标变换,可以把文字放在不同的位置:

  • ax.transData:以数据为基准
  • ax.transAxes:以轴为基准
import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots()
ax.axis = ([0, 1, 0, 1])

ax.text(0.5, 0.5, "Data:(0.5, 0.5)", transform=ax.transData)
ax.text(0.5, 0.1, "Axes:(0.5, 0.1)", transform=ax.transAxes)
plt.show()

python数据分析工具之 matplotlib详解

箭头注释

  • plt.arrow:产生SVG向量图形式的箭头,会随着分辨率改变而改变,不推荐
  • plt.annotate:可以创建文字和箭头
import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots()

x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal')

ax.annotate("max", xy=(6.28, 1), xytext=(10, 4), arrowprops=dict(facecolor='black', shrink=0.05))
ax.annotate('min', xy=(5 * np.pi, -1), xytext=(2, -6), arrowprops=dict(arrowstyle="->", connectionstyle='angle3, angleA=0, angleB=-90'))
plt.show()

python数据分析工具之 matplotlib详解

python数据分析工具之 matplotlib详解

三维图

基础三维图

matplotlib 中绘制三维图用到 mplot3d 包。导入 mplot3d 包后,可以利用 projection 参数,控制绘制三维图。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

fig = plt.figure()
ax = plt.axes(projection='3d')

plt.show()

python数据分析工具之 matplotlib详解

三维图中当然包含三个轴,x,y,z。画线 ax.plot3D,画点 ax.scatter3D。为了三维效果,它会自动将远处的点颜色变浅。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

fig = plt.figure()
ax = plt.axes(projection='3d')

z = np.linspace(0, 15, 100)
x = np.sin(z)
y = np.cos(z)

ax.plot3D(x, y, z, 'red')
ax.scatter3D(x, y, z, 'blue')
plt.show()

三维等高线

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

fig = plt.figure()
ax = plt.axes(projection='3d')

def f(x, y):
 return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y =np.meshgrid(x, y)
Z = f(X, Y)

ax.contour3D(X, Y, Z, 50)
plt.show()

python数据分析工具之 matplotlib详解

图形绘制出来后,可以通过 ax.view_init 来控制观察的角度,便于理解。

  • 俯仰角度:x-y 平面的旋转角度
  • 方位角度:沿着 z 轴顺时针旋转角度

pandas绘图

上篇文章讲述了 pandas 的基本用法,pandas 是数据分析中最重要的工具之一,这里补充一下 pandas 绘图。

Series绘图

# 这是一个小栗子
s1 = Series(np.random.randint(1000).cumsum()) # 创建series,cumsum()是指叠加求和,本位数是前几项之和
s1.plot() # series有自己的plot函数,里面可以写入想要的参数

DataFrame绘图

df = DataFrame(
 np.random.randint(1,10,40).reshape(10,4),
 columns=['A','B','C','D']
 )
df.plot()
# dataframe也有自己的plot,按列画出来,参数包含ax,选择输出的画布
# 参数:stacked=True,表示一个堆叠的情况,同一个index下,columns一不同颜色叠在一起

总结

到此这篇关于python数据分析工具之 matplotlib详解的文章就介绍到这了,更多相关python数据分析 matplotlib内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python处理xml文件的方法小结
May 02 Python
python机器学习之神经网络(二)
Dec 20 Python
python机器学习之贝叶斯分类
Mar 26 Python
Python 爬虫之Beautiful Soup模块使用指南
Jul 05 Python
python批量赋值操作实例
Oct 22 Python
python制作简单五子棋游戏
Jun 18 Python
python 爬虫 实现增量去重和定时爬取实例
Feb 28 Python
python使用pyecharts库画地图数据可视化的实现
Mar 25 Python
Jupyter notebook运行Spark+Scala教程
Apr 10 Python
django orm模块中的 is_delete用法
May 20 Python
python各种excel写入方式的速度对比
Nov 10 Python
python中绕过反爬虫的方法总结
Nov 25 Python
使用python检查yaml配置文件是否符合要求
Apr 09 #Python
Python第三方包之DingDingBot钉钉机器人
Apr 09 #Python
python实现简单学生信息管理系统
Apr 09 #Python
Pycharm pyuic5实现将ui文件转为py文件,让UI界面成功显示
Apr 08 #Python
pycharm的python_stubs问题
Apr 08 #Python
Pycharm中安装Pygal并使用Pygal模拟掷骰子(推荐)
Apr 08 #Python
解决pycharm下pyuic工具使用的问题
Apr 08 #Python
You might like
浅析get与post的一些特殊情况
2014/07/28 PHP
PHP图像处理之imagecreate、imagedestroy函数介绍
2014/11/19 PHP
使用PHP连接多种数据库的实现代码(mysql,access,sqlserver,Oracle)
2016/12/21 PHP
laravel手动创建数组分页的实现代码
2018/06/07 PHP
Chrome下ifame父窗口调用子窗口的问题示例探讨
2014/03/17 Javascript
javascript 判断整数方法分享
2014/12/16 Javascript
javascript实现类似超链接的效果
2014/12/26 Javascript
js读取csv文件并使用json显示出来
2015/01/09 Javascript
DOM基础教程之事件对象
2015/01/20 Javascript
jQuery动态修改超链接地址的方法
2015/02/13 Javascript
javascript实现html页面之间参数传递的四种方法实例分析
2015/12/15 Javascript
JS中frameset框架弹出层实例代码
2016/04/01 Javascript
JS在Chrome浏览器中showModalDialog函数返回值为undefined的解决方法
2016/08/03 Javascript
微信小程序 input输入框控件详解及实例(多种示例)
2016/12/14 Javascript
PHP实现本地图片上传和验证功能
2017/02/27 Javascript
JQuery查找子元素find()和遍历集合each的方法总结
2017/03/07 Javascript
JavaScript转换数据库DateTime字段类型方法
2017/06/27 Javascript
Windows下使用Nodejs运行js的方法
2017/09/02 NodeJs
Vue项目自动转换 px 为 rem的实现方法
2018/10/29 Javascript
Angular使用ControlValueAccessor创建自定义表单控件
2019/03/08 Javascript
vue开发中遇到的问题总结
2020/04/07 Javascript
基于JavaScript实现大文件上传后端代码实例
2020/08/18 Javascript
基于element-ui封装表单金额输入框的方法示例
2021/01/06 Javascript
[06:50]DSPL次级职业联赛十强晋级之路
2014/11/18 DOTA
SVM基本概念及Python实现代码
2017/12/27 Python
Python绘制KS曲线的实现方法
2018/08/13 Python
对Python3.x版本print函数左右对齐详解
2018/12/22 Python
对Python3 序列解包详解
2019/02/16 Python
Python实现socket非阻塞通讯功能示例
2019/11/06 Python
详解django使用include无法跳转的解决方法
2020/03/19 Python
python 解决mysql where in 对列表(list,,array)问题
2020/06/06 Python
Gretna Green中文官网:苏格兰格林小镇
2019/10/16 全球购物
利用promise及参数解构封装ajax请求的方法
2021/03/24 Javascript
介绍信的格式
2015/01/30 职场文书
MySQL优化之如何写出高质量sql语句
2021/05/17 MySQL
JVM的类加载器和双亲委派模式你了解吗
2022/03/13 Java/Android