Python语言描述机器学习之Logistic回归算法


Posted in Python onDecember 21, 2017

本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类。Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们需要根据输入数据的特征值(数值型)的大小来判断数据是某种分类或者不是某种分类。

一、样本数据

在我们的例子中,我们有这样一些样本数据:

样本数据有3个特征值:X0X0,X1X1,X2X2

我们通过这3个特征值中的X1X1和X2X2来判断数据是否符合要求,即符合要求的为1,不符合要求的为0。

样本数据分类存放在一个数组中

我们在logRegres.py文件中编写如下函数来准备数据,并将数据打印观察一下:

#coding=utf-8
from numpy import *
def loadDataSet():
 dataMat = []; labelMat = []
 fr = open('testSet.txt')
 for line in fr.readlines():
  lineArr = line.strip().split()
  dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
  labelMat.append(int(lineArr[2]))
 return dataMat,labelMat
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 print 'dataMat:\n',dataMat

我们来观察一下这个数据样本:

dataMat:
[[1.0, -0.017612, 14.053064], [1.0, -1.395634, 4.662541], [1.0, -0.752157, 6.53862], [1.0, -1.322371, 7.152853], [1.0, 0.423363, 11.054677], [1.0, 0.406704, 7.067335], [1.0, 0.667394, 12.741452], [1.0, -2.46015, 6.866805], [1.0, 0.569411, 9.548755], [1.0, -0.026632, 10.427743], [1.0, 0.850433, 6.920334], [1.0, 1.347183, 13.1755], [1.0, 1.176813, 3.16702], [1.0, -1.781871, 9.097953], [1.0, -0.566606, 5.749003], [1.0, 0.931635, 1.589505], [1.0, -0.024205, 6.151823], [1.0, -0.036453, 2.690988], [1.0, -0.196949, 0.444165], [1.0, 1.014459, 5.754399], [1.0, 1.985298, 3.230619], [1.0, -1.693453, -0.55754], [1.0, -0.576525, 11.778922], [1.0, -0.346811, -1.67873], [1.0, -2.124484, 2.672471], [1.0, 1.217916, 9.597015], [1.0, -0.733928, 9.098687], [1.0, -3.642001, -1.618087], [1.0, 0.315985, 3.523953], [1.0, 1.416614, 9.619232], [1.0, -0.386323, 3.989286], [1.0, 0.556921, 8.294984], [1.0, 1.224863, 11.58736], [1.0, -1.347803, -2.406051], [1.0, 1.196604, 4.951851], [1.0, 0.275221, 9.543647], [1.0, 0.470575, 9.332488], [1.0, -1.889567, 9.542662], [1.0, -1.527893, 12.150579], [1.0, -1.185247, 11.309318], [1.0, -0.445678, 3.297303], [1.0, 1.042222, 6.105155], [1.0, -0.618787, 10.320986], [1.0, 1.152083, 0.548467], [1.0, 0.828534, 2.676045], [1.0, -1.237728, 10.549033], [1.0, -0.683565, -2.166125], [1.0, 0.229456, 5.921938], [1.0, -0.959885, 11.555336], [1.0, 0.492911, 10.993324], [1.0, 0.184992, 8.721488], [1.0, -0.355715, 10.325976], [1.0, -0.397822, 8.058397], [1.0, 0.824839, 13.730343], [1.0, 1.507278, 5.027866], [1.0, 0.099671, 6.835839], [1.0, -0.344008, 10.717485], [1.0, 1.785928, 7.718645], [1.0, -0.918801, 11.560217], [1.0, -0.364009, 4.7473], [1.0, -0.841722, 4.119083], [1.0, 0.490426, 1.960539], [1.0, -0.007194, 9.075792], [1.0, 0.356107, 12.447863], [1.0, 0.342578, 12.281162], [1.0, -0.810823, -1.466018], [1.0, 2.530777, 6.476801], [1.0, 1.296683, 11.607559], [1.0, 0.475487, 12.040035], [1.0, -0.783277, 11.009725], [1.0, 0.074798, 11.02365], [1.0, -1.337472, 0.468339], [1.0, -0.102781, 13.763651], [1.0, -0.147324, 2.874846], [1.0, 0.518389, 9.887035], [1.0, 1.015399, 7.571882], [1.0, -1.658086, -0.027255], [1.0, 1.319944, 2.171228], [1.0, 2.056216, 5.019981], [1.0, -0.851633, 4.375691], [1.0, -1.510047, 6.061992], [1.0, -1.076637, -3.181888], [1.0, 1.821096, 10.28399], [1.0, 3.01015, 8.401766], [1.0, -1.099458, 1.688274], [1.0, -0.834872, -1.733869], [1.0, -0.846637, 3.849075], [1.0, 1.400102, 12.628781], [1.0, 1.752842, 5.468166], [1.0, 0.078557, 0.059736], [1.0, 0.089392, -0.7153], [1.0, 1.825662, 12.693808], [1.0, 0.197445, 9.744638], [1.0, 0.126117, 0.922311], [1.0, -0.679797, 1.22053], [1.0, 0.677983, 2.556666], [1.0, 0.761349, 10.693862], [1.0, -2.168791, 0.143632], [1.0, 1.38861, 9.341997], [1.0, 0.317029, 14.739025]]
labelMat:
[0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0]

样本数据dataMat的第一列,也就是我们的特征值X0X0全部为1,这个问题我们之后在计算回归参数时需要注意理解。所有的样本数据一共100条,对应的分类结果也是100个。

那么,我们现在的问题是:
我们要找到样本空间中的特征值与分类结果的关系。设计一个函数或者功能,实现在输入一组特征值后,能够根据样本空间特征值与分类结果的关系,自动为输入的数据进行分类,即得到结果要么是1,要么是0。

二、Sigmoid函数

为了解决上一节我们提到的问题,我们这里先介绍一下Sigmoid函数:

Python语言描述机器学习之Logistic回归算法

这个函数有如下几个特征:

当z=0z=0时,值为0.50.5
当zz不断增大时,值将趋近于1
当zz不断减小时,值将趋近于0
我们来看一下函数的曲线图:

Python语言描述机器学习之Logistic回归算法

我们如果将样本空间的3个特征值X0X0、X1X1和X2X2的值代入到函数中,计算出一个结果。那么这个结果将是接近与我们的分类结果的(0到1之间的一个数值)。如果这个结果接近0那么我们就认为分类为0,如果结果接近1我们就认为分类为1。

以什么方式代入到函数中呢?其实简单的相加就可以,因为zz不断增大或者减小时,函数的值就相应的趋近于1或者0。我们使z=x0+x1+x2z=x0+x1+x2

Python语言描述机器学习之Logistic回归算法

但是实际的情况是我们的计算结果和实际的分类值,会有误差,甚至是完全不正确。为了矫正这个问题,我们为样本空间的3个特征值X0X0、X1X1和X2X2,一一定义一个回归系数w0w0、w1w1和w2w2,使这个误差减小。即使z=w0x0+w1x1+w2x2

Python语言描述机器学习之Logistic回归算法

其实不难想象,这组ww回归系数的值决定了我们计算结果的准确性,甚至是正确性。也就是说,这组ww的值反应了样本空间分类的规则。
那么,我们在输入一组样本之外的数据时,配合正确的ww回归系数,我们就能得到比较接近样本空间分类规则的分类结果。
问题又来了,我们怎么来得到这样一组ww回归系数呢?

三、梯度上升法

梯度上升法,是在函数的梯度方向上,不断的迭代计算参数值,以找到一个最大的参数值。迭代公式如下:

Python语言描述机器学习之Logistic回归算法

其中,αα为步长,Δσ(w)Δσ(w)为σ(w)σ(w)函数梯度。关于梯度的推导请参考这里。作者的数学能力有限,就不做说明了。

最后,我们可以得到梯度的计算公式:

Python语言描述机器学习之Logistic回归算法

那么,迭代公式如下:

Python语言描述机器学习之Logistic回归算法

公式说明:

wk+1wk+1为本次迭代XX特征项的回归系数结果
wkwk为上一次迭代XX特征项的回归系数结果
αα为每次迭代向梯度方向移动的步长
xixi为XX特征项中第i个元素
yiyi是样本中第i条记录的分类样本结果
σ(xi,wk)σ(xi,wk)是样本中第i条记录,使用sigmoid函数和wkwk作为回归系数计算的分类结果
[yi−σ(xi,wk)][yi−σ(xi,wk)]是样本第i条记录对应的分类结果值,与sigmoid函数使用wkwk作为回归系数计算的分类结果值的误差值。

现在,我们有了计算回归系数的公式,下面我们在logRegres.py文件中来实现一个函数,实现计算样本空间的回归系数,并打印一下我们的结果:

def gradAscent(dataMatIn, classLabels):
 dataMatrix = mat(dataMatIn)    #100行3列
 #print dataMatrix
 labelMat = mat(classLabels).transpose() #100行1列
 #print 'labelMat:\n',labelMat
 print 'labelMat 的形状:rowNum=',shape(labelMat)[0],'colNum=',shape(labelMat)[1]
 rowNum,colNum = shape(dataMatrix)
 alpha = 0.001
 maxCycles = 500
 weights = ones((colNum,1)) #3行1列
 #print shape(dataMatrix)
 #print shape(weights)
 #print shape(labelMat)
 for k in range(maxCycles):    #heavy on matrix operations
  h = sigmoid(dataMatrix*weights)  #100行1列
  #print h
  error = (labelMat - h)    #vector subtraction
  weights = weights + alpha * dataMatrix.transpose()* error #3行1列
 return weights
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 #weights=gradAscent(dataMat,labelMat)
 #print 'dataMat:\n',dataMat
 #print 'labelMat:\n',labelMat
 print weights

打印结果:

回归系数:
[[ 4.12414349]
 [ 0.48007329]
 [-0.6168482 ]]

为了验证我们计算的回顾系数的准确性,我们观察一下样本空间的散点图和回归系数的拟合曲线。我们以z(x1,x2)=w0+w1x1+w2x2作为我们的拟合函数,在坐标系中画出它的拟合曲线。以样本空间中X1X1和X2X2的值作为横坐标和纵坐标,画出样本空间的散点。代码如下:

def plotBestFit(weights):
 import matplotlib.pyplot as plt
 dataMat,labelMat=loadDataSet()
 dataArr = array(dataMat)
 n = shape(dataArr)[0] 
 xcord1 = []; ycord1 = []
 xcord2 = []; ycord2 = []
 for i in range(n):
  if int(labelMat[i])== 1:
   xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
  else:
   xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
 fig = plt.figure()
 ax = fig.add_subplot(111)
 ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
 ax.scatter(xcord2, ycord2, s=30, c='green')
 x = arange(-3.0, 3.0, 0.1)
 y = (-weights[0]-weights[1]*x)/weights[2]
 y = y.transpose()
 ax.plot(x, y)
 plt.xlabel('X1'); plt.ylabel('X2');
 plt.show()
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 weights=gradAscent(dataMat,labelMat)
 print '回归系数:\n',weights
 plotBestFit(weights)

运行后,我们得到如下图片:

Python语言描述机器学习之Logistic回归算法

通过我们的观察,我们的这个回归系数的算法还是比较准确的,拟合曲线将样本数据分成两部分,并且符合样本的分类规则。

接下来,我们来实现一个分类器,并测试这个分类器:

def classify0(targetData,weights):
 v = sigmoid(targetData*weights)
 if v>0.5:
  return 1.0
 else :
  return 0
def testClassify0():
 dataMat,labelMat=loadDataSet()
 examPercent=0.7
 row,col=shape(dataMat)
 exam=[]
 exam_label=[]
 test=[]
 test_label=[]
 for i in range(row):
  if i < row*examPercent:
   exam.append(dataMat[i])
   exam_label.append(labelMat[i])
  else:
   test.append(dataMat[i])
   test_label.append(labelMat[i])
 weights=gradAscent(exam,exam_label)
 errCnt=0
 trow,tcol=shape(test)
 for i in range(trow):
  v=int(classify0(test[i],weights))
  if v != int(test_label[i]):
   errCnt += 1
   print '计算值:',v,' 原值',test_label[i]
 print '错误率:',errCnt/trow
if __name__=='__main__':
 #dataMat,labelMat=loadDataSet()
 #weights=gradAscent(dataMat,labelMat)
 ##print 'dataMat:\n',dataMat
 ##print 'labelMat:\n',labelMat
 #print '回归系数:\n',weights
 #plotBestFit(weights)
 testClassify0()

分类器的实现很简单。我们使用之前的样本数据中的70条数据作为我们测试的样本数据,计算出回归系数。然后用分类器对剩下的30条记录进行分类,然后将结果和样本数据进行对比。最后打印出错误率。我们可以看到,错误率是0,近乎完美!我们可以修改测试样本在原样本空间的比例多测试几遍。那么,结论是我们的算法的准确率还不错!

那么,到这里问题就解决了吗?好像还差一点什么。我们来仔细研究一下我们计算回归系数的方法,不难发现,这个过程中我们用样本数据组成的矩阵进行了矩阵乘法。也就是说,为了计算回归系数,我们遍历了整个样本数据。

我们的问题又来了,我们例子中的样本数据只有100条,如果处理成千上万的样本数据,我们的计算回归系数的函数的计算复杂度会直线上升。下面我们来看看如何优化这个算法。

四、优化梯度上升算法——随机梯度上升法

我们在理解了回归系数迭代计算的公式

Python语言描述机器学习之Logistic回归算法

和我们实现的程序之后。我们将计算回归系数的方法进行如下改进:

def stocGradAscent0(dataMatrix, classLabels):
 m,n = shape(dataMatrix)
 alpha = 0.01
 weights = ones((n,1)) #initialize to all ones
 for i in range(m):
  h = sigmoid(sum(dataMatrix[i]*weights))
  error = classLabels[i] - h
  weights = weights + alpha * error * mat(dataMatrix[i]).transpose()
 return weights

每一次迭代计算回归系数时,只使用样本空间中的一个样本点来计算。我们通过程序生成一个样本散点和拟合曲线的图来看一下这个算法的准确程度:

Python语言描述机器学习之Logistic回归算法

不难看出跟之前的算法相差还是比较大的。原因是之前的算法是通过500次迭代算出的结果,后者只经过了100次迭代。那么这里要说明的问题是,回归系数在随着迭代次数的增加是趋于收敛的,并且收敛的过程是存在波动的。说白了,就是迭代的次数越多,越接近我们想要的那个值,但是由于样本的数据是非线性的,这个过程也会有一定的误差。具体的回归系数和迭代次数的关系大家可以参考一些教材,例如《机器学习实战》中的描述,这里就不做详细介绍了。
我们这里只介绍一下如何改进我们的算法,使我们的算法能够快速的收敛并减小波动。方法如下:

每次迭代随机的抽取一个样本点来计算回归向量
迭代的步长随着迭代次数增大而不断减少,但是永远不等于0

改进代码,并打印出拟合曲线和样本散点图:

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
 m,n = shape(dataMatrix)
 weights = ones((n,1)) #initialize to all ones
 for j in range(numIter):
  dataIndex = range(m)
  for i in range(m):
   alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not 
   randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
   h = sigmoid(sum(dataMatrix[randIndex]*weights))
   error = classLabels[randIndex] - h
   weights = weights + alpha * error * mat(dataMatrix[randIndex]).transpose()
   del(dataIndex[randIndex])
 return weights
if __name__=='__main__':
 dataMat,labelMat=loadDataSet()
 #weights=stocGradAscent0(dataMat,labelMat)
 weights=stocGradAscent1(dataMat,labelMat)
 #weights=gradAscent(dataMat,labelMat)
 #print 'dataMat:\n',dataMat
 #print 'labelMat:\n',labelMat
 #print '回归系数:\n',weights
 plotBestFit(weights)
 #testClassify0()

默认是150迭代的样本散点图和拟合曲线图:

Python语言描述机器学习之Logistic回归算法

不难看出准确程度与第一个算法很接近了!

五、总结

Logistic回归算法主要是利用了Sgimoid函数来为数据分类,分类的准确的关键取决于从样本空间中计算出的回归系数。我们使用梯度上升法来计算回归系数,并采用随机梯度上升法来改进了算法的性能。

以上就是本文关于Python语言描述机器学习之Logistic回归算法的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他Python和算法相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
使用django-suit为django 1.7 admin后台添加模板
Nov 18 Python
python实现颜色空间转换程序(Tkinter)
Dec 31 Python
Python mutiprocessing多线程池pool操作示例
Jan 30 Python
Python脚本按照当前日期创建多级目录
Mar 01 Python
Python时间差中seconds和total_seconds的区别详解
Dec 26 Python
python爬虫模拟浏览器访问-User-Agent过程解析
Dec 28 Python
如何基于python对接钉钉并获取access_token
Apr 21 Python
Python3自动生成MySQL数据字典的markdown文本的实现
May 07 Python
Python带参数的装饰器运行原理解析
Jun 09 Python
Python 高效编程技巧分享
Sep 10 Python
Python爬虫进阶之Beautiful Soup库详解
Apr 29 Python
七个非常实用的Python工具包总结
Jun 15 Python
python Crypto模块的安装与使用方法
Dec 21 #Python
python编写Logistic逻辑回归
Dec 30 #Python
python+selenium识别验证码并登录的示例代码
Dec 21 #Python
python实现随机森林random forest的原理及方法
Dec 21 #Python
python编写分类决策树的代码
Dec 21 #Python
Python基于PyGraphics包实现图片截取功能的方法
Dec 21 #Python
用Python写王者荣耀刷金币脚本
Dec 21 #Python
You might like
php 各种应用乱码问题的解决方法
2010/05/09 PHP
php缓存技术详细总结
2013/08/07 PHP
大家须知简单的php性能优化注意点
2016/01/04 PHP
PHP程序员学习使用Swoole的理由
2018/06/24 PHP
firefox下对ajax的onreadystatechange的支持情况分析
2009/12/14 Javascript
js去字符串前后空格5种实现方法及比较
2013/04/03 Javascript
jQuery图片滚动图片的效果(另类实现)
2013/06/02 Javascript
js中的preventDefault与stopPropagation详解
2014/01/29 Javascript
利用js制作html table分页示例(js实现分页)
2014/04/25 Javascript
node.js中的dns.getServers方法使用说明
2014/12/08 Javascript
JavaScript实现动画打开半透明提示层的方法
2015/04/21 Javascript
基于javascript实现tab切换特效
2016/03/29 Javascript
js判断数组key是否存在(不用循环)的简单实例
2016/08/03 Javascript
老生常谈JQuery data方法的使用
2016/09/09 Javascript
JAVA Web实时消息后台服务器推送技术---GoEasy
2016/11/04 Javascript
史上最全JavaScript常用的简写技巧(推荐)
2017/08/17 Javascript
Vue中的scoped实现原理及穿透方法
2018/05/15 Javascript
JS实现处理时间,年月日,星期的公共方法示例
2019/05/31 Javascript
Vue使用虚拟dom进行渲染view的方法
2019/12/26 Javascript
vuex Module将 store 分割成模块的操作
2020/12/07 Vue.js
python读取浮点数和读取文本文件示例
2014/05/06 Python
python类继承用法实例分析
2014/10/10 Python
深入理解Python中变量赋值的问题
2017/01/12 Python
python实现整数的二进制循环移位
2019/03/08 Python
python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结
2019/07/04 Python
python框架flask入门之环境搭建及开启调试
2020/06/07 Python
Python matplotlib图例放在外侧保存时显示不完整问题解决
2020/07/28 Python
bonprix匈牙利:女士、男士和儿童服装
2019/07/19 全球购物
DJI全球:DJI Global
2021/03/15 全球购物
J2SDK1.5与J2SDK5.0有什么区别
2012/09/19 面试题
python re模块和正则表达式
2021/03/24 Python
活动策划邀请函
2014/02/06 职场文书
工业自动化专业自荐信范文
2014/04/10 职场文书
安全生产目标责任书
2014/04/14 职场文书
冬季安全检查方案
2014/05/23 职场文书
详解在SQLPlus中实现上下键翻查历史命令的功能
2022/03/18 SQL Server