python编写分类决策树的代码


Posted in Python onDecember 21, 2017

决策树通常在机器学习中用于分类。

优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。

1.信息增益

划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:

python编写分类决策树的代码

其中p(xi)为该分类的概率。
熵,即信息的期望值为:

python编写分类决策树的代码

计算信息熵的代码如下:

def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts:
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0
  for key in labelCounts:
    shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
  return shannonEnt

可以根据信息熵,按照获取最大信息增益的方法划分数据集。

2.划分数据集

划分数据集就是将所有符合要求的元素抽出来。

def splitDataSet(dataSet,axis,value):
  retDataset = []
  for featVec in dataSet:
    if featVec[axis] == value:
      newVec = featVec[:axis]
      newVec.extend(featVec[axis+1:])
      retDataset.append(newVec)
  return retDataset

3.选择最好的数据集划分方式

信息增益是熵的减少或者是信息无序度的减少。

def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1
  bestInfoGain = 0
  bestFeature = -1
  baseEntropy = calcShannonEnt(dataSet)
  for i in range(numFeatures):
    allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表
    allValue = set(allValue)#最快得到列表中唯一元素值的方法
    newEntropy = 0
    for value in allValue:
      splitset = splitDataSet(dataSet,i,value)
      newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
    infoGain = baseEntropy - newEntropy
    if infoGain > bestInfoGain:
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature

4.递归创建决策树

结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。

def majorityCnt(classList):
 classCount = {}
 for value in classList:
  if value not in classCount: classCount[value] = 0
  classCount[value] += 1
 classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
 return classCount[0][0]

生成决策树:

def createTree(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 labelsCopy = labels[:]
 if classList.count(classList[0]) == len(classList):
  return classList[0]
 if len(dataSet[0]) == 1:
  return majorityCnt(classList)
 bestFeature = chooseBestFeatureToSplit(dataSet)
 bestLabel = labelsCopy[bestFeature]
 myTree = {bestLabel:{}}
 featureValues = [example[bestFeature] for example in dataSet]
 featureValues = set(featureValues)
 del(labelsCopy[bestFeature])
 for value in featureValues:
  subLabels = labelsCopy[:]
  myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
 return myTree

5.测试算法——使用决策树分类

同样采用递归的方式得到分类结果。

def classify(inputTree,featLabels,testVec):
 currentFeat = list(inputTree.keys())[0]
 secondTree = inputTree[currentFeat]
 try:
  featureIndex = featLabels.index(currentFeat)
 except ValueError as err:
  print('yes')
 try:
  for value in secondTree.keys():
   if value == testVec[featureIndex]:
    if type(secondTree[value]).__name__ == 'dict':
     classLabel = classify(secondTree[value],featLabels,testVec)
    else:
     classLabel = secondTree[value]
  return classLabel
 except AttributeError:
  print(secondTree)

6.完整代码如下

import numpy as np
import math
import operator
def createDataSet():
 dataSet = [[1,1,'yes'],
    [1,1,'yes'],
    [1,0,'no'],
    [0,1,'no'],
    [0,1,'no'],]
 label = ['no surfacing','flippers']
 return dataSet,label

def calcShannonEnt(dataSet):
 numEntries = len(dataSet)
 labelCounts = {}
 for featVec in dataSet:
  currentLabel = featVec[-1]
  if currentLabel not in labelCounts:
   labelCounts[currentLabel] = 0
  labelCounts[currentLabel] += 1
 shannonEnt = 0
 for key in labelCounts:
  shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
 return shannonEnt


def splitDataSet(dataSet,axis,value):
 retDataset = []
 for featVec in dataSet:
  if featVec[axis] == value:
   newVec = featVec[:axis]
   newVec.extend(featVec[axis+1:])
   retDataset.append(newVec)
 return retDataset

def chooseBestFeatureToSplit(dataSet):
 numFeatures = len(dataSet[0]) - 1
 bestInfoGain = 0
 bestFeature = -1
 baseEntropy = calcShannonEnt(dataSet)
 for i in range(numFeatures):
  allValue = [example[i] for example in dataSet]
  allValue = set(allValue)
  newEntropy = 0
  for value in allValue:
   splitset = splitDataSet(dataSet,i,value)
   newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
  infoGain = baseEntropy - newEntropy
  if infoGain > bestInfoGain:
   bestInfoGain = infoGain
   bestFeature = i
 return bestFeature

def majorityCnt(classList):
 classCount = {}
 for value in classList:
  if value not in classCount: classCount[value] = 0
  classCount[value] += 1
 classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
 return classCount[0][0]   

def createTree(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 labelsCopy = labels[:]
 if classList.count(classList[0]) == len(classList):
  return classList[0]
 if len(dataSet[0]) == 1:
  return majorityCnt(classList)
 bestFeature = chooseBestFeatureToSplit(dataSet)
 bestLabel = labelsCopy[bestFeature]
 myTree = {bestLabel:{}}
 featureValues = [example[bestFeature] for example in dataSet]
 featureValues = set(featureValues)
 del(labelsCopy[bestFeature])
 for value in featureValues:
  subLabels = labelsCopy[:]
  myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
 return myTree


def classify(inputTree,featLabels,testVec):
 currentFeat = list(inputTree.keys())[0]
 secondTree = inputTree[currentFeat]
 try:
  featureIndex = featLabels.index(currentFeat)
 except ValueError as err:
  print('yes')
 try:
  for value in secondTree.keys():
   if value == testVec[featureIndex]:
    if type(secondTree[value]).__name__ == 'dict':
     classLabel = classify(secondTree[value],featLabels,testVec)
    else:
     classLabel = secondTree[value]
  return classLabel
 except AttributeError:
  print(secondTree)

if __name__ == "__main__":
 dataset,label = createDataSet()
 myTree = createTree(dataset,label)
 a = [1,1]
 print(classify(myTree,label,a))

7.编程技巧

extend与append的区别

newVec.extend(featVec[axis+1:])
 retDataset.append(newVec)

extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中

列表推到

创建新列表的方式

allValue = [example[i] for example in dataSet]

提取列表中唯一的元素

allValue = set(allValue)

列表/元组排序,sorted()函数

classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

列表的复制

labelsCopy = labels[:]

代码及数据集下载:决策树

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python写的服务监控程序实例
Jan 31 Python
简单谈谈Python中的闭包
Nov 30 Python
浅谈Python类里的__init__方法函数,Python类的构造函数
Dec 10 Python
socket + select 完成伪并发操作的实例
Aug 15 Python
python+os根据文件名自动生成文本
Mar 21 Python
为什么你还不懂得怎么使用Python协程
May 13 Python
用Q-learning算法实现自动走迷宫机器人的方法示例
Jun 03 Python
创建Shapefile文件并写入数据的例子
Nov 26 Python
Python写出新冠状病毒确诊人数地图的方法
Feb 12 Python
Python实战之用tkinter库做一个鼠标模拟点击器
Apr 27 Python
Python-typing: 类型标注与支持 Any类型详解
May 10 Python
Django操作cookie的实现
May 26 Python
Python基于PyGraphics包实现图片截取功能的方法
Dec 21 #Python
用Python写王者荣耀刷金币脚本
Dec 21 #Python
python使用Apriori算法进行关联性解析
Dec 21 #Python
python实现kMeans算法
Dec 21 #Python
利用Tkinter(python3.6)实现一个简单计算器
Dec 21 #Python
python编写朴素贝叶斯用于文本分类
Dec 21 #Python
python并发2之使用asyncio处理并发
Dec 21 #Python
You might like
php算开始时间到过期时间的相隔的天数
2011/01/12 PHP
PHP连接SQLServer2005的实现方法(附ntwdblib.dll下载)
2012/07/02 PHP
PHP提示Deprecated: mysql_connect(): The mysql extension is deprecated的解决方法
2014/08/28 PHP
php实现webservice实例
2014/11/06 PHP
thinkphp中memcache的用法实例
2014/11/29 PHP
Codeigniter通过SimpleXML将xml转换成对象的方法
2015/03/19 PHP
PHP设计模式之模板方法模式定义与用法详解
2018/04/02 PHP
Yii2语言国际化的配置教程
2018/08/19 PHP
PHP7 其他语言层面的修改
2021/03/09 PHP
分享10篇优秀的jQuery幻灯片制作教程及应用案例
2011/04/16 Javascript
javascript面向对象包装类Class封装类库剖析
2013/01/24 Javascript
简介JavaScript中substring()方法的使用
2015/06/06 Javascript
jQuery实现伪分页的方法分享
2016/02/17 Javascript
JavaScript关于提高网站性能的几点建议(一)
2016/07/24 Javascript
jQuery禁用快捷键例如禁用F5刷新 禁用右键菜单等的简单实现
2016/08/31 Javascript
Ionic项目中Native Camera的使用方法
2017/06/07 Javascript
JS如何设置元素样式的方法示例
2017/08/28 Javascript
基于复选框demo(分享)
2017/09/27 Javascript
Vue之Vue.set动态新增对象属性方法
2018/02/23 Javascript
微信小程序动态生成二维码的实现代码
2018/07/25 Javascript
微信小程序 MinUI组件库系列之badge徽章组件示例
2018/08/20 Javascript
解决vue.js 数据渲染成功仍报错的问题
2018/08/25 Javascript
Vue实现购物车的全选、单选、显示商品价格代码实例
2019/05/06 Javascript
Python迭代器和生成器介绍
2015/03/06 Python
Python及PyCharm下载与安装教程
2017/11/18 Python
解读python logging模块的使用方法
2018/04/17 Python
在Python中如何传递任意数量的实参的示例代码
2019/03/21 Python
Python 如何反方向迭代一个序列
2020/07/28 Python
Python列表嵌套常见坑点及解决方案
2020/09/30 Python
详解Scrapy Redis入门实战
2020/11/18 Python
Pytorch实验常用代码段汇总
2020/11/19 Python
关于HTML5+ API plusready的兼容问题
2020/11/20 HTML / CSS
幼儿园评语大全
2014/04/17 职场文书
2015年技术员工作总结
2015/04/10 职场文书
2015年领班工作总结
2015/04/29 职场文书
导游词之江南园林狮子林
2019/09/16 职场文书