python编写朴素贝叶斯用于文本分类


Posted in Python onDecember 21, 2017

朴素贝叶斯估计

朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
具体的,根据训练数据集,学习先验概率的极大似然估计分布

python编写朴素贝叶斯用于文本分类

以及条件概率为

python编写朴素贝叶斯用于文本分类

Xl表示第l个特征,由于特征条件独立的假设,可得

python编写朴素贝叶斯用于文本分类

条件概率的极大似然估计为

python编写朴素贝叶斯用于文本分类

根据贝叶斯定理

python编写朴素贝叶斯用于文本分类

则由上式可以得到条件概率P(Y=ck|X=x)。

贝叶斯估计

用极大似然估计可能会出现所估计的概率为0的情况。后影响到后验概率结果的计算,使分类产生偏差。采用如下方法解决。
条件概率的贝叶斯改为

python编写朴素贝叶斯用于文本分类

其中Sl表示第l个特征可能取值的个数。
同样,先验概率的贝叶斯估计改为

$$
P(Y=c_k) = \frac{\sum\limits_{i=1}^NI(y_i=c_k)+\lambda}{N+K\lambda}
$K$

表示Y的所有可能取值的个数,即类型的个数。
具体意义是,给每种可能初始化出现次数为1,保证每种可能都出现过一次,来解决估计为0的情况。

文本分类

朴素贝叶斯分类器可以给出一个最有结果的猜测值,并给出估计概率。通常用于文本分类。
分类核心思想为选择概率最大的类别。贝叶斯公式如下:

python编写朴素贝叶斯用于文本分类

词条:将每个词出现的次数作为特征。
假设每个特征相互独立,即每个词相互独立,不相关。则

python编写朴素贝叶斯用于文本分类

完整代码如下;

import numpy as np
import re
import feedparser
import operator
def loadDataSet():
 postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
 classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
 return postingList,classVec

def createVocabList(data): #创建词向量
 returnList = set([])
 for subdata in data:
  returnList = returnList | set(subdata)
 return list(returnList)


def setofWords2Vec(vocabList,data):  #将文本转化为词条

 returnList = [0]*len(vocabList)
 for vocab in data:
  if vocab in vocabList:
   returnList[vocabList.index(vocab)] += 1
 return returnList


def trainNB0(trainMatrix,trainCategory):  #训练,得到分类概率
 pAbusive = sum(trainCategory)/len(trainCategory)
 p1num = np.ones(len(trainMatrix[0]))
 p0num = np.ones(len(trainMatrix[0]))
 p1Denom = 2
 p0Denom = 2
 for i in range(len(trainCategory)):
  if trainCategory[i] == 1:
   p1num = p1num + trainMatrix[i]
   p1Denom = p1Denom + sum(trainMatrix[i])
  else:
   p0num = p0num + trainMatrix[i]
   p0Denom = p0Denom + sum(trainMatrix[i])
 p1Vect = np.log(p1num/p1Denom)
 p0Vect = np.log(p0num/p0Denom)
 return p0Vect,p1Vect,pAbusive


def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #分类
 p0 = sum(vec2Classify*p0Vec)+np.log(1-pClass1)
 p1 = sum(vec2Classify*p1Vec)+np.log(pClass1)
 if p1 > p0:
  return 1
 else:
  return 0
def textParse(bigString):   #文本解析
 splitdata = re.split(r'\W+',bigString)
 splitdata = [token.lower() for token in splitdata if len(token) > 2]
 return splitdata
def spamTest():
 docList = []
 classList = []
 for i in range(1,26):
  with open('spam/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(1)
  with open('ham/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(0)
 vocalList = createVocabList(docList)
 trainList = list(range(50))
 testList = []
 for i in range(13):
  num = int(np.random.uniform(0,len(docList))-10)
  testList.append(trainList[num])
  del(trainList[num])
 docMatrix = []
 docClass = []
 for i in trainList:
  subVec = setofWords2Vec(vocalList,docList[i])
  docMatrix.append(subVec)
  docClass.append(classList[i])
 p0v,p1v,pAb = trainNB0(docMatrix,docClass)
 errorCount = 0
 for i in testList:
  subVec = setofWords2Vec(vocalList,docList[i])
  if classList[i] != classifyNB(subVec,p0v,p1v,pAb):
   errorCount += 1
 return errorCount/len(testList)

def calcMostFreq(vocabList,fullText):
 count = {}
 for vocab in vocabList:
  count[vocab] = fullText.count(vocab)
 sortedFreq = sorted(count.items(),key=operator.itemgetter(1),reverse=True)
 return sortedFreq[:30]

def localWords(feed1,feed0):
 docList = []
 classList = []
 fullText = []
 numList = min(len(feed1['entries']),len(feed0['entries']))
 for i in range(numList):
  doc1 = feed1['entries'][i]['summary']
  docList.append(doc1)
  classList.append(1)
  fullText.extend(doc1)
  doc0 = feed0['entries'][i]['summary']
  docList.append(doc0)
  classList.append(0)
  fullText.extend(doc0)
 vocabList = createVocabList(docList)
 top30Words = calcMostFreq(vocabList,fullText)
 for word in top30Words:
  if word[0] in vocabList:
   vocabList.remove(word[0])
 trainingSet = list(range(2*numList))
 testSet = []
 for i in range(20):
  randnum = int(np.random.uniform(0,len(trainingSet)-5))
  testSet.append(trainingSet[randnum])
  del(trainingSet[randnum])
 trainMat = []
 trainClass = []
 for i in trainingSet:
  trainClass.append(classList[i])
  trainMat.append(setofWords2Vec(vocabList,docList[i]))
 p0V,p1V,pSpam = trainNB0(trainMat,trainClass)
 errCount = 0
 for i in testSet:
  testData = setofWords2Vec(vocabList,docList[i])
  if classList[i] != classifyNB(testData,p0V,p1V,pSpam):
   errCount += 1
 return errCount/len(testData)
if __name__=="__main__":
 ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
 sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
 print(localWords(ny,sf))

编程技巧:

1.两个集合的并集

vocab = vocab | set(document)

2.创建元素全为零的向量

vec = [0]*10

代码及数据集下载:贝叶斯

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用在线API查询IP对应的地理位置信息实例
Jun 01 Python
详解Python编程中包的概念与管理
Oct 16 Python
Python获取指定字符前面的所有字符方法
May 02 Python
Python使用itertools模块实现排列组合功能示例
Jul 02 Python
pyqt5对用qt designer设计的窗体实现弹出子窗口的示例
Jun 19 Python
详细介绍pandas的DataFrame的append方法使用
Jul 31 Python
Python正则表达式急速入门(小结)
Dec 16 Python
Python3打包exe代码2种方法实例解析
Feb 17 Python
关于python3.7安装matplotlib始终无法成功的问题的解决
Jul 28 Python
通过实例简单了解python yield使用方法
Aug 06 Python
用ldap作为django后端用户登录验证的实现
Dec 07 Python
C++和python实现阿姆斯特朗数字查找实例代码
Dec 07 Python
python并发2之使用asyncio处理并发
Dec 21 #Python
利用Python暴力破解zip文件口令的方法详解
Dec 21 #Python
Python人脸识别初探
Dec 21 #Python
python中判断文件编码的chardet(实例讲解)
Dec 21 #Python
python 设置文件编码格式的实现方法
Dec 21 #Python
Python+OpenCV人脸检测原理及示例详解
Oct 19 #Python
Python 查看文件的编码格式方法
Dec 21 #Python
You might like
强制PHP命令行脚本单进程运行的方法
2014/04/15 PHP
windows7配置Nginx+php+mysql的详细教程
2016/09/04 PHP
laravel创建类似ThinPHP中functions.php的全局函数
2016/11/26 PHP
PHP实现的链式队列结构示例
2017/09/15 PHP
JavaScript的目的分析
2007/01/05 Javascript
js 判断浏览器类型 去全角、半角空格 自动关闭当前窗口
2009/04/10 Javascript
javascript游戏开发之《三国志曹操传》零部件开发(三)情景对话中仿打字机输出文字
2013/01/23 Javascript
js中return false(阻止)的用法
2013/08/14 Javascript
js实现文本框输入文字个数限制代码
2015/12/25 Javascript
JavaScript 节流函数 Throttle 详解
2016/07/04 Javascript
jQuery Ajax 异步加载显示等待效果代码分享
2016/08/01 Javascript
用js写的一个路由(简单实例)
2016/09/24 Javascript
Express URL跳转(重定向)的实现方法
2017/04/07 Javascript
JQuery实现图片轮播效果
2017/05/08 jQuery
微信小程序媒体组件详解(视频,音乐,图片)
2017/09/19 Javascript
微信小程序实现左滑动删除效果
2020/03/30 Javascript
webpack3升级到webpack4遇到问题总结
2019/09/30 Javascript
vue中使用echarts的示例
2021/01/03 Vue.js
[51:17]完美世界DOTA2联赛循环赛Inki vs DeMonsTer 第二场 10月30日
2020/10/31 DOTA
详解Python发送邮件实例
2016/01/10 Python
python判断自身是否正在运行的方法
2019/08/08 Python
python 消费 kafka 数据教程
2019/12/21 Python
python实现在列表中查找某个元素的下标示例
2020/11/16 Python
CSS3 translate导致字体模糊的实例代码
2019/08/30 HTML / CSS
伦敦平价潮流珠宝首饰品牌:Astrid & Miyu
2016/10/10 全球购物
Paul Smith英国官网:英国国宝级时装品牌
2019/03/21 全球购物
Herschel美国官网:背包、手提袋及配件
2020/03/10 全球购物
美国新娘礼品店:The Paisley Box
2020/09/08 全球购物
小学生家长评语集锦
2014/01/30 职场文书
亲子活动总结
2014/04/26 职场文书
中华美德颂演讲稿
2014/05/20 职场文书
股指期货心得体会
2014/09/13 职场文书
2014年党委工作总结
2014/11/22 职场文书
小学德育工作总结2015
2015/05/12 职场文书
答辩状格式范本
2015/05/22 职场文书
利用uni-app生成微信小程序的踩坑记录
2022/04/05 Javascript