python编写朴素贝叶斯用于文本分类


Posted in Python onDecember 21, 2017

朴素贝叶斯估计

朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
具体的,根据训练数据集,学习先验概率的极大似然估计分布

python编写朴素贝叶斯用于文本分类

以及条件概率为

python编写朴素贝叶斯用于文本分类

Xl表示第l个特征,由于特征条件独立的假设,可得

python编写朴素贝叶斯用于文本分类

条件概率的极大似然估计为

python编写朴素贝叶斯用于文本分类

根据贝叶斯定理

python编写朴素贝叶斯用于文本分类

则由上式可以得到条件概率P(Y=ck|X=x)。

贝叶斯估计

用极大似然估计可能会出现所估计的概率为0的情况。后影响到后验概率结果的计算,使分类产生偏差。采用如下方法解决。
条件概率的贝叶斯改为

python编写朴素贝叶斯用于文本分类

其中Sl表示第l个特征可能取值的个数。
同样,先验概率的贝叶斯估计改为

$$
P(Y=c_k) = \frac{\sum\limits_{i=1}^NI(y_i=c_k)+\lambda}{N+K\lambda}
$K$

表示Y的所有可能取值的个数,即类型的个数。
具体意义是,给每种可能初始化出现次数为1,保证每种可能都出现过一次,来解决估计为0的情况。

文本分类

朴素贝叶斯分类器可以给出一个最有结果的猜测值,并给出估计概率。通常用于文本分类。
分类核心思想为选择概率最大的类别。贝叶斯公式如下:

python编写朴素贝叶斯用于文本分类

词条:将每个词出现的次数作为特征。
假设每个特征相互独立,即每个词相互独立,不相关。则

python编写朴素贝叶斯用于文本分类

完整代码如下;

import numpy as np
import re
import feedparser
import operator
def loadDataSet():
 postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
 classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
 return postingList,classVec

def createVocabList(data): #创建词向量
 returnList = set([])
 for subdata in data:
  returnList = returnList | set(subdata)
 return list(returnList)


def setofWords2Vec(vocabList,data):  #将文本转化为词条

 returnList = [0]*len(vocabList)
 for vocab in data:
  if vocab in vocabList:
   returnList[vocabList.index(vocab)] += 1
 return returnList


def trainNB0(trainMatrix,trainCategory):  #训练,得到分类概率
 pAbusive = sum(trainCategory)/len(trainCategory)
 p1num = np.ones(len(trainMatrix[0]))
 p0num = np.ones(len(trainMatrix[0]))
 p1Denom = 2
 p0Denom = 2
 for i in range(len(trainCategory)):
  if trainCategory[i] == 1:
   p1num = p1num + trainMatrix[i]
   p1Denom = p1Denom + sum(trainMatrix[i])
  else:
   p0num = p0num + trainMatrix[i]
   p0Denom = p0Denom + sum(trainMatrix[i])
 p1Vect = np.log(p1num/p1Denom)
 p0Vect = np.log(p0num/p0Denom)
 return p0Vect,p1Vect,pAbusive


def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #分类
 p0 = sum(vec2Classify*p0Vec)+np.log(1-pClass1)
 p1 = sum(vec2Classify*p1Vec)+np.log(pClass1)
 if p1 > p0:
  return 1
 else:
  return 0
def textParse(bigString):   #文本解析
 splitdata = re.split(r'\W+',bigString)
 splitdata = [token.lower() for token in splitdata if len(token) > 2]
 return splitdata
def spamTest():
 docList = []
 classList = []
 for i in range(1,26):
  with open('spam/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(1)
  with open('ham/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(0)
 vocalList = createVocabList(docList)
 trainList = list(range(50))
 testList = []
 for i in range(13):
  num = int(np.random.uniform(0,len(docList))-10)
  testList.append(trainList[num])
  del(trainList[num])
 docMatrix = []
 docClass = []
 for i in trainList:
  subVec = setofWords2Vec(vocalList,docList[i])
  docMatrix.append(subVec)
  docClass.append(classList[i])
 p0v,p1v,pAb = trainNB0(docMatrix,docClass)
 errorCount = 0
 for i in testList:
  subVec = setofWords2Vec(vocalList,docList[i])
  if classList[i] != classifyNB(subVec,p0v,p1v,pAb):
   errorCount += 1
 return errorCount/len(testList)

def calcMostFreq(vocabList,fullText):
 count = {}
 for vocab in vocabList:
  count[vocab] = fullText.count(vocab)
 sortedFreq = sorted(count.items(),key=operator.itemgetter(1),reverse=True)
 return sortedFreq[:30]

def localWords(feed1,feed0):
 docList = []
 classList = []
 fullText = []
 numList = min(len(feed1['entries']),len(feed0['entries']))
 for i in range(numList):
  doc1 = feed1['entries'][i]['summary']
  docList.append(doc1)
  classList.append(1)
  fullText.extend(doc1)
  doc0 = feed0['entries'][i]['summary']
  docList.append(doc0)
  classList.append(0)
  fullText.extend(doc0)
 vocabList = createVocabList(docList)
 top30Words = calcMostFreq(vocabList,fullText)
 for word in top30Words:
  if word[0] in vocabList:
   vocabList.remove(word[0])
 trainingSet = list(range(2*numList))
 testSet = []
 for i in range(20):
  randnum = int(np.random.uniform(0,len(trainingSet)-5))
  testSet.append(trainingSet[randnum])
  del(trainingSet[randnum])
 trainMat = []
 trainClass = []
 for i in trainingSet:
  trainClass.append(classList[i])
  trainMat.append(setofWords2Vec(vocabList,docList[i]))
 p0V,p1V,pSpam = trainNB0(trainMat,trainClass)
 errCount = 0
 for i in testSet:
  testData = setofWords2Vec(vocabList,docList[i])
  if classList[i] != classifyNB(testData,p0V,p1V,pSpam):
   errCount += 1
 return errCount/len(testData)
if __name__=="__main__":
 ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
 sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
 print(localWords(ny,sf))

编程技巧:

1.两个集合的并集

vocab = vocab | set(document)

2.创建元素全为零的向量

vec = [0]*10

代码及数据集下载:贝叶斯

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用mailbox打印电子邮件的方法
Apr 30 Python
python用post访问restful服务接口的方法
Dec 07 Python
使用python对文件中的单词进行提取的方法示例
Dec 21 Python
python获取服务器响应cookie的实例
Dec 28 Python
pytorch标签转onehot形式实例
Jan 02 Python
基于python的docx模块处理word和WPS的docx格式文件方式
Feb 13 Python
Python开发之pip安装及使用方法详解
Feb 21 Python
Python统计学一数据的概括性度量详解
Mar 03 Python
django的模型类管理器——数据库操作的封装详解
Apr 01 Python
python FTP编程基础入门
Feb 27 Python
python中Pexpect的工作流程实例讲解
Mar 02 Python
Python中22个万用公式的小结
Jul 21 Python
python并发2之使用asyncio处理并发
Dec 21 #Python
利用Python暴力破解zip文件口令的方法详解
Dec 21 #Python
Python人脸识别初探
Dec 21 #Python
python中判断文件编码的chardet(实例讲解)
Dec 21 #Python
python 设置文件编码格式的实现方法
Dec 21 #Python
Python+OpenCV人脸检测原理及示例详解
Oct 19 #Python
Python 查看文件的编码格式方法
Dec 21 #Python
You might like
php跨服务器访问方法小结
2015/05/12 PHP
PHP基于curl实现模拟微信浏览器打开微信链接的方法示例
2019/02/15 PHP
jQuery学习笔记之Helloworld
2010/12/22 Javascript
Jquery下attr和removeAttr的使用方法
2010/12/28 Javascript
基于jquery点击自以外任意处,关闭自身的代码
2012/02/10 Javascript
JS实现图片高亮展示效果实例
2015/11/24 Javascript
jQuery flip插件实现的翻牌效果示例【附demo源码下载】
2016/09/20 Javascript
如何使用jquery实现文字上下滚动效果
2016/10/12 Javascript
react-native DatePicker日期选择组件的实现代码
2017/09/12 Javascript
nodejs搭建本地服务器轻松解决跨域问题
2018/03/21 NodeJs
微信小程序实现评论功能
2018/11/28 Javascript
基于Vue实现的多条件筛选功能的详解(类似京东和淘宝功能)
2019/05/07 Javascript
vue中进行微博分享的实例讲解
2019/10/14 Javascript
python翻译软件实现代码(使用google api完成)
2013/11/26 Python
通过代码实例展示Python中列表生成式的用法
2015/03/31 Python
python使用自定义user-agent抓取网页的方法
2015/04/15 Python
Python回调函数用法实例详解
2015/07/02 Python
Python机器学习库scikit-learn安装与基本使用教程
2018/06/25 Python
Linux CentOS Python开发环境搭建教程
2018/11/28 Python
Python读取excel指定列生成指定sql脚本的方法
2018/11/28 Python
Python 移动光标位置的方法
2019/01/20 Python
Python 实现文件打包、上传与校验的方法
2019/02/13 Python
Python3中exp()函数用法分析
2019/02/19 Python
python创建n行m列数组示例
2019/12/02 Python
如何基于Python制作有道翻译小工具
2019/12/16 Python
Python表达式的优先级详解
2020/02/18 Python
如何用Django处理gzip数据流
2021/01/29 Python
详解使用HTML5 Canvas创建动态粒子网格动画
2016/12/14 HTML / CSS
沙特阿拉伯排名第一的在线时尚购物应用程序:1Zillion
2020/08/08 全球购物
迟到检讨书400字
2014/01/13 职场文书
《美丽的小兴安岭》教学反思
2014/02/26 职场文书
2014年实习期工作总结
2014/11/27 职场文书
财务部会计岗位职责
2015/02/03 职场文书
闪闪红星观后感
2015/06/08 职场文书
《社戏》教学反思
2016/02/22 职场文书
Nginx下SSL证书安装部署步骤介绍
2021/12/06 Servers