python实现随机森林random forest的原理及方法


Posted in Python onDecember 21, 2017

引言

想通过随机森林来获取数据的主要特征

1、理论

随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险。 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失。也可用来预测疾病的风险和病患者的易感性。

根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法;

前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random
Forest)

随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。

简单来说,随机森林就是对决策树的集成,但有两点不同:

(2)特征选取的差异性:每个决策树的n个分类特征是在所有特征中随机选择的(n是一个需要我们自己调整的参数)
随机森林,简单理解, 比如预测salary,就是构建多个决策树job,age,house,然后根据要预测的量的各个特征(teacher,39,suburb)分别在对应决策树的目标值概率(salary<5000,salary>=5000),从而,确定预测量的发生概率(如,预测出P(salary<5000)=0.3).

随机森林是一个可做能够回归和分类。 它具备处理大数据的特性,而且它有助于估计或变量是非常重要的基础数据建模。

参数说明:

最主要的两个参数是n_estimators和max_features。

n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。

max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:

max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。
同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

2、随机森林python实现

2.1Demo1

实现随机森林基本功能

#随机森林
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 

from sklearn.datasets import load_iris 
iris=load_iris() 
#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica 
print(iris['target'].shape)
rf=RandomForestRegressor()#这里使用了默认的参数设置 
rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练 

#随机挑选两个预测不相同的样本 
instance=iris.data[[100,109]] 
print(instance)
rf.predict(instance[[0]])
print('instance 0 prediction;',rf.predict(instance[[0]]))
print( 'instance 1 prediction;',rf.predict(instance[[1]]))
print(iris.target[100],iris.target[109])

运行结果

(150,)
[[ 6.3  3.3  6.   2.5]
 [ 7.2  3.6  6.1  2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2

2.2 Demo2

3种方法的比较

#random forest test
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())    


clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())    

clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())

运行结果:

0.979408793821
0.999607843137
0.999898989899

2.3 Demo3-实现特征选择

#随机森林2
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 
from sklearn.datasets import load_iris 
iris=load_iris() 

from sklearn.model_selection import cross_val_score, ShuffleSplit 
X = iris["data"] 
Y = iris["target"] 
names = iris["feature_names"] 
rf = RandomForestRegressor() 
scores = [] 
for i in range(X.shape[1]): 
 score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", 
    cv=ShuffleSplit(len(X), 3, .3)) 
 scores.append((round(np.mean(score), 3), names[i])) 
print(sorted(scores, reverse=True))

运行结果:

[(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length
(cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]

2.4 demo4-随机森林

本来想利用以下代码来构建随机随机森林决策树,但是,遇到的问题是,程序一直在运行,无法响应,还需要调试。

#随机森林4
#coding:utf-8 
import csv 
from random import seed 
from random import randrange 
from math import sqrt 
def loadCSV(filename):#加载数据,一行行的存入列表 
 dataSet = [] 
 with open(filename, 'r') as file: 
 csvReader = csv.reader(file) 
 for line in csvReader: 
  dataSet.append(line) 
 return dataSet 

# 除了标签列,其他列都转换为float类型 
def column_to_float(dataSet): 
 featLen = len(dataSet[0]) - 1 
 for data in dataSet: 
 for column in range(featLen): 
  data[column] = float(data[column].strip()) 

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集 
def spiltDataSet(dataSet, n_folds): 
 fold_size = int(len(dataSet) / n_folds) 
 dataSet_copy = list(dataSet) 
 dataSet_spilt = [] 
 for i in range(n_folds): 
 fold = [] 
 while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立 
  index = randrange(len(dataSet_copy)) 
  fold.append(dataSet_copy.pop(index)) # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。 
 dataSet_spilt.append(fold) 
 return dataSet_spilt 

# 构造数据子集 
def get_subsample(dataSet, ratio): 
 subdataSet = [] 
 lenSubdata = round(len(dataSet) * ratio)#返回浮点数 
 while len(subdataSet) < lenSubdata: 
 index = randrange(len(dataSet) - 1) 
 subdataSet.append(dataSet[index]) 
 # print len(subdataSet) 
 return subdataSet 

# 分割数据集 
def data_spilt(dataSet, index, value): 
 left = [] 
 right = [] 
 for row in dataSet: 
 if row[index] < value: 
  left.append(row) 
 else: 
  right.append(row) 
 return left, right 

# 计算分割代价 
def spilt_loss(left, right, class_values): 
 loss = 0.0 
 for class_value in class_values: 
 left_size = len(left) 
 if left_size != 0: # 防止除数为零 
  prop = [row[-1] for row in left].count(class_value) / float(left_size) 
  loss += (prop * (1.0 - prop)) 
 right_size = len(right) 
 if right_size != 0: 
  prop = [row[-1] for row in right].count(class_value) / float(right_size) 
  loss += (prop * (1.0 - prop)) 
 return loss 

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征 
def get_best_spilt(dataSet, n_features): 
 features = [] 
 class_values = list(set(row[-1] for row in dataSet)) 
 b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None 
 while len(features) < n_features: 
 index = randrange(len(dataSet[0]) - 1) 
 if index not in features: 
  features.append(index) 
 # print 'features:',features 
 for index in features:#找到列的最适合做节点的索引,(损失最小) 
 for row in dataSet: 
  left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支 
  loss = spilt_loss(left, right, class_values) 
  if loss < b_loss:#寻找最小分割代价 
  b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right 
 # print b_loss 
 # print type(b_index) 
 return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right} 

# 决定输出标签 
def decide_label(data): 
 output = [row[-1] for row in data] 
 return max(set(output), key=output.count) 

# 子分割,不断地构建叶节点的过程对对对 
def sub_spilt(root, n_features, max_depth, min_size, depth): 
 left = root['left'] 
 # print left 
 right = root['right'] 
 del (root['left']) 
 del (root['right']) 
 # print depth 
 if not left or not right: 
 root['left'] = root['right'] = decide_label(left + right) 
 # print 'testing' 
 return 
 if depth > max_depth: 
 root['left'] = decide_label(left) 
 root['right'] = decide_label(right) 
 return 
 if len(left) < min_size: 
 root['left'] = decide_label(left) 
 else: 
 root['left'] = get_best_spilt(left, n_features) 
 # print 'testing_left' 
 sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1) 
 if len(right) < min_size: 
 root['right'] = decide_label(right) 
 else: 
 root['right'] = get_best_spilt(right, n_features) 
 # print 'testing_right' 
 sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1) 

 # 构造决策树 
def build_tree(dataSet, n_features, max_depth, min_size): 
 root = get_best_spilt(dataSet, n_features) 
 sub_spilt(root, n_features, max_depth, min_size, 1) 
 return root 
# 预测测试集结果 
def predict(tree, row): 
 predictions = [] 
 if row[tree['index']] < tree['value']: 
 if isinstance(tree['left'], dict): 
  return predict(tree['left'], row) 
 else: 
  return tree['left'] 
 else: 
 if isinstance(tree['right'], dict): 
  return predict(tree['right'], row) 
 else: 
  return tree['right'] 
  # predictions=set(predictions) 
def bagging_predict(trees, row): 
 predictions = [predict(tree, row) for tree in trees] 
 return max(set(predictions), key=predictions.count) 
# 创建随机森林 
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees): 
 trees = [] 
 for i in range(n_trees): 
 train = get_subsample(train, ratio)#从切割的数据集中选取子集 
 tree = build_tree(train, n_features, max_depth, min_size) 
 # print 'tree %d: '%i,tree 
 trees.append(tree) 
 # predict_values = [predict(trees,row) for row in test] 
 predict_values = [bagging_predict(trees, row) for row in test] 
 return predict_values 
# 计算准确率 
def accuracy(predict_values, actual): 
 correct = 0 
 for i in range(len(actual)): 
 if actual[i] == predict_values[i]: 
  correct += 1 
 return correct / float(len(actual)) 
if __name__ == '__main__': 
 seed(1) 
 dataSet = loadCSV(r'G:\0研究生\tianchiCompetition\训练小样本2.csv') 
 column_to_float(dataSet) 
 n_folds = 5 
 max_depth = 15 
 min_size = 1 
 ratio = 1.0 
 # n_features=sqrt(len(dataSet)-1) 
 n_features = 15 
 n_trees = 10 
 folds = spiltDataSet(dataSet, n_folds)#先是切割数据集 
 scores = [] 
 for fold in folds: 
 train_set = folds[ 
   :] # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L) 
 train_set.remove(fold)#选好训练集 
 # print len(folds) 
 train_set = sum(train_set, []) # 将多个fold列表组合成一个train_set列表 
 # print len(train_set) 
 test_set = [] 
 for row in fold: 
  row_copy = list(row) 
  row_copy[-1] = None 
  test_set.append(row_copy) 
  # for row in test_set: 
  # print row[-1] 
 actual = [row[-1] for row in fold] 
 predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees) 
 accur = accuracy(predict_values, actual) 
 scores.append(accur) 
 print ('Trees is %d' % n_trees) 
 print ('scores:%s' % scores) 
 print ('mean score:%s' % (sum(scores) / float(len(scores))))

2.5 随机森林分类sonic data

# CART on the Bank Note dataset
from random import seed
from random import randrange
from csv import reader

# Load a CSV file
def load_csv(filename):
 file = open(filename, "r")
 lines = reader(file)
 dataset = list(lines)
 return dataset

# Convert string column to float
def str_column_to_float(dataset, column):
 for row in dataset:
 row[column] = float(row[column].strip())

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
 dataset_split = list()
 dataset_copy = list(dataset)
 fold_size = int(len(dataset) / n_folds)
 for i in range(n_folds):
 fold = list()
 while len(fold) < fold_size:
  index = randrange(len(dataset_copy))
  fold.append(dataset_copy.pop(index))
 dataset_split.append(fold)
 return dataset_split

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
 correct = 0
 for i in range(len(actual)):
 if actual[i] == predicted[i]:
  correct += 1
 return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
 folds = cross_validation_split(dataset, n_folds)
 scores = list()
 for fold in folds:
 train_set = list(folds)
 train_set.remove(fold)
 train_set = sum(train_set, [])
 test_set = list()
 for row in fold:
  row_copy = list(row)
  test_set.append(row_copy)
  row_copy[-1] = None
 predicted = algorithm(train_set, test_set, *args)
 actual = [row[-1] for row in fold]
 accuracy = accuracy_metric(actual, predicted)
 scores.append(accuracy)
 return scores

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
 left, right = list(), list()
 for row in dataset:
 if row[index] < value:
  left.append(row)
 else:
  right.append(row)
 return left, right

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
 gini = 0.0
 for class_value in class_values:
 for group in groups:
  size = len(group)
  if size == 0:
  continue
  proportion = [row[-1] for row in group].count(class_value) / float(size)
  gini += (proportion * (1.0 - proportion))
 return gini

# Select the best split point for a dataset
def get_split(dataset):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 for index in range(len(dataset[0])-1):
 for row in dataset:
  groups = test_split(index, row[index], dataset)
  gini = gini_index(groups, class_values)
  if gini < b_score:
  b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 print ({'index':b_index, 'value':b_value})
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value
def to_terminal(group):
 outcomes = [row[-1] for row in group]
 return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
 left, right = node['groups']
 del(node['groups'])
 # check for a no split
 if not left or not right:
 node['left'] = node['right'] = to_terminal(left + right)
 return
 # check for max depth
 if depth >= max_depth:
 node['left'], node['right'] = to_terminal(left), to_terminal(right)
 return
 # process left child
 if len(left) <= min_size:
 node['left'] = to_terminal(left)
 else:
 node['left'] = get_split(left)
 split(node['left'], max_depth, min_size, depth+1)
 # process right child
 if len(right) <= min_size:
 node['right'] = to_terminal(right)
 else:
 node['right'] = get_split(right)
 split(node['right'], max_depth, min_size, depth+1)

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)
 split(root, max_depth, min_size, 1)
 return root

# Make a prediction with a decision tree
def predict(node, row):
 if row[node['index']] < node['value']:
 if isinstance(node['left'], dict):
  return predict(node['left'], row)
 else:
  return node['left']
 else:
 if isinstance(node['right'], dict):
  return predict(node['right'], row)
 else:
  return node['right']

# Classification and Regression Tree Algorithm
def decision_tree(train, test, max_depth, min_size):
 tree = build_tree(train, max_depth, min_size)
 predictions = list()
 for row in test:
 prediction = predict(tree, row)
 predictions.append(prediction)
 return(predictions)

# Test CART on Bank Note dataset
seed(1)
# load and prepare data
filename = r'G:\0pythonstudy\决策树\sonar.all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(len(dataset[0])-1):
 str_column_to_float(dataset, i)
# evaluate algorithm
n_folds = 5
max_depth = 5
min_size = 10
scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

运行结果:

{'index': 38, 'value': 0.0894}
{'index': 36, 'value': 0.8459}
{'index': 50, 'value': 0.0024}
{'index': 15, 'value': 0.0906}
{'index': 16, 'value': 0.9819}
{'index': 10, 'value': 0.0785}
{'index': 16, 'value': 0.0886}
{'index': 38, 'value': 0.0621}
{'index': 5, 'value': 0.0226}
{'index': 8, 'value': 0.0368}
{'index': 11, 'value': 0.0754}
{'index': 0, 'value': 0.0239}
{'index': 8, 'value': 0.0368}
{'index': 29, 'value': 0.1671}
{'index': 46, 'value': 0.0237}
{'index': 38, 'value': 0.0621}
{'index': 14, 'value': 0.0668}
{'index': 4, 'value': 0.0167}
{'index': 37, 'value': 0.0836}
{'index': 12, 'value': 0.0616}
{'index': 7, 'value': 0.0333}
{'index': 33, 'value': 0.8741}
{'index': 16, 'value': 0.0886}
{'index': 8, 'value': 0.0368}
{'index': 33, 'value': 0.0798}
{'index': 44, 'value': 0.0298}
Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951
2195, 39.02439024390244]
Mean Accuracy: 53.659%
请按任意键继续. . .

知识点:

1.load CSV file

from csv import reader
# Load a CSV file
def load_csv(filename):
 file = open(filename, "r")
 lines = reader(file)
 dataset = list(lines)
 return dataset
filename = r'G:\0pythonstudy\决策树\sonar.all-data.csv'
dataset=load_csv(filename)
print(dataset)

2.把数据转化成float格式

# Convert string column to float
def str_column_to_float(dataset, column):
 for row in dataset:
 row[column] = float(row[column].strip())
 # print(row[column])
# convert string attributes to integers
for i in range(len(dataset[0])-1):
 str_column_to_float(dataset, i)

3.把最后一列的分类字符串转化成0、1整数

def str_column_to_int(dataset, column):
 class_values = [row[column] for row in dataset]#生成一个class label的list
 # print(class_values)
 unique = set(class_values)#set 获得list的不同元素
 print(unique)
 lookup = dict()#定义一个字典
 # print(enumerate(unique))
 for i, value in enumerate(unique):
 lookup[value] = i
 # print(lookup)
 for row in dataset:
 row[column] = lookup[row[column]]
 print(lookup['M'])

4、把数据集分割成K份

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
 dataset_split = list()#生成空列表
 dataset_copy = list(dataset)
 print(len(dataset_copy))
 print(len(dataset))
 #print(dataset_copy)
 fold_size = int(len(dataset) / n_folds)
 for i in range(n_folds):
 fold = list()
 while len(fold) < fold_size:
  index = randrange(len(dataset_copy))
  # print(index)
  fold.append(dataset_copy.pop(index))#使用.pop()把里边的元素都删除(相当于转移),这k份元素各不相同。
 dataset_split.append(fold)
 return dataset_split
n_folds=5 
folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的训练集

5.计算正确率

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
 correct = 0
 for i in range(len(actual)):
 if actual[i] == predicted[i]:
  correct += 1
 return correct / float(len(actual)) * 100.0#这个是二值分类正确性的表达式

6.二分类每列

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
 left, right = list(), list()#初始化两个空列表
 for row in dataset:
 if row[index] < value:
  left.append(row)
 else:
  right.append(row)
 return left, right #返回两个列表,每个列表以value为界限对指定行(index)进行二分类。

7.使用gini系数来获得最佳分割点

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
 gini = 0.0
 for class_value in class_values:
 for group in groups:
  size = len(group)
  if size == 0:
  continue
  proportion = [row[-1] for row in group].count(class_value) / float(size)
  gini += (proportion * (1.0 - proportion))
 return gini

# Select the best split point for a dataset
def get_split(dataset):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 for index in range(len(dataset[0])-1):
 for row in dataset:
  groups = test_split(index, row[index], dataset)
  gini = gini_index(groups, class_values)
  if gini < b_score:
  b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 # print(groups)
 print ({'index':b_index, 'value':b_value,'score':gini})
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

这段代码,在求gini指数,直接应用定义式,不难理解。获得最佳分割点可能比较难看懂,这里用了两层迭代,一层是对不同列的迭代,一层是对不同行的迭代。并且,每次迭代,都对gini系数进行更新。

8、决策树生成

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
 left, right = node['groups']
 del(node['groups'])
 # check for a no split
 if not left or not right:
 node['left'] = node['right'] = to_terminal(left + right)
 return
 # check for max depth
 if depth >= max_depth:
 node['left'], node['right'] = to_terminal(left), to_terminal(right)
 return
 # process left child
 if len(left) <= min_size:
 node['left'] = to_terminal(left)
 else:
 node['left'] = get_split(left)
 split(node['left'], max_depth, min_size, depth+1)
 # process right child
 if len(right) <= min_size:
 node['right'] = to_terminal(right)
 else:
 node['right'] = get_split(right)
 split(node['right'], max_depth, min_size, depth+1)

这里使用了递归编程,不断生成左叉树和右叉树。

9.构建决策树

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)
 split(root, max_depth, min_size, 1)
 return root 
tree=build_tree(train_set, max_depth, min_size)
print(tree)

10、预测test集

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)#获得最好的分割点,下标值,groups
 split(root, max_depth, min_size, 1)
 return root 
# tree=build_tree(train_set, max_depth, min_size)
# print(tree) 

# Make a prediction with a decision tree
def predict(node, row):
 print(row[node['index']])
 print(node['value'])
 if row[node['index']] < node['value']:#用测试集来代入训练的最好分割点,分割点有偏差时,通过搜索左右叉树来进一步比较。
 if isinstance(node['left'], dict):#如果是字典类型,执行操作
  return predict(node['left'], row)
 else:
  return node['left']
 else:
 if isinstance(node['right'], dict):
  return predict(node['right'], row)
 else:
  return node['right']
tree = build_tree(train_set, max_depth, min_size)
predictions = list()
for row in test_set:
 prediction = predict(tree, row)
 predictions.append(prediction)

11.评价决策树

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
 folds = cross_validation_split(dataset, n_folds)
 scores = list()
 for fold in folds:
 train_set = list(folds)
 train_set.remove(fold)
 train_set = sum(train_set, [])
 test_set = list()
 for row in fold:
  row_copy = list(row)
  test_set.append(row_copy)
  row_copy[-1] = None
 predicted = algorithm(train_set, test_set, *args)
 actual = [row[-1] for row in fold]
 accuracy = accuracy_metric(actual, predicted)
 scores.append(accuracy)
 return scores

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python的绘图工具matplotlib使用实例
Jul 03 Python
举例讲解如何在Python编程中进行迭代和遍历
Jan 19 Python
Python程序中用csv模块来操作csv文件的基本使用教程
Mar 03 Python
Python使用poplib模块和smtplib模块收发电子邮件的教程
Jul 02 Python
python、java等哪一门编程语言适合人工智能?
Nov 13 Python
Python机器学习库scikit-learn安装与基本使用教程
Jun 25 Python
Python容器使用的5个技巧和2个误区总结
Sep 26 Python
python 实现图片上传接口开发 并生成可以访问的图片url
Dec 18 Python
Python判断字符串是否为空和null方法实例
Apr 26 Python
Django实现后台上传并显示图片功能
May 29 Python
在keras里实现自定义上采样层
Jun 28 Python
Python加载数据的5种不同方式(收藏)
Nov 13 Python
python编写分类决策树的代码
Dec 21 #Python
Python基于PyGraphics包实现图片截取功能的方法
Dec 21 #Python
用Python写王者荣耀刷金币脚本
Dec 21 #Python
python使用Apriori算法进行关联性解析
Dec 21 #Python
python实现kMeans算法
Dec 21 #Python
利用Tkinter(python3.6)实现一个简单计算器
Dec 21 #Python
python编写朴素贝叶斯用于文本分类
Dec 21 #Python
You might like
Zerg兵种介绍
2020/03/14 星际争霸
PHP脚本的10个技巧(6)
2006/10/09 PHP
php实现MySQL数据库备份与还原类实例
2014/12/09 PHP
PHP获取一段文本显示点阵宽度和高度的方法
2015/03/12 PHP
php检查日期函数checkdate用法实例
2015/03/19 PHP
PHP实现的大文件切割与合并功能示例
2018/04/10 PHP
jQuery学习5 jQuery事件模型
2010/02/07 Javascript
javascript权威指南 学习笔记之null和undefined
2011/09/25 Javascript
jquery右下角弹出提示框示例代码
2013/10/08 Javascript
javascript中的循环语句for语句深入理解
2014/04/04 Javascript
js统计录入文本框中字符的个数并加以限制不超过多少
2014/05/23 Javascript
jquery uploadify 在FF下无效的解决办法
2014/09/26 Javascript
js在IE与firefox的差异集锦
2014/11/11 Javascript
kindeditor修复会替换script内容的问题
2015/04/03 Javascript
JavaScript中定时控制Throttle、Debounce和Immediate详解
2016/11/17 Javascript
一个检测OpenSSL心脏出血漏洞的Python脚本分享
2014/04/10 Python
Python实现telnet服务器的方法
2015/07/10 Python
python 默认参数问题的陷阱
2016/02/29 Python
详解python之多进程和进程池(Processing库)
2017/06/09 Python
Python 在字符串中加入变量的实例讲解
2018/05/02 Python
浅谈Python2、Python3相对路径、绝对路径导入方法
2018/06/22 Python
pandas去重复行并分类汇总的实现方法
2019/01/29 Python
python实现植物大战僵尸游戏实例代码
2019/06/10 Python
对Pytorch神经网络初始化kaiming分布详解
2019/08/18 Python
python elasticsearch环境搭建详解
2019/09/02 Python
Django通过dwebsocket实现websocket的例子
2019/11/15 Python
Python3.x+迅雷x 自动下载高分电影的实现方法
2020/01/12 Python
如何在python中判断变量的类型
2020/07/29 Python
HTML5图片预览实例分享
2014/06/04 HTML / CSS
莱德杯高尔夫欧洲官方商店:Ryder Cup Shop
2019/08/14 全球购物
怎么样写好简历中的自我评价
2013/10/25 职场文书
护士演讲稿范文
2014/01/05 职场文书
师德师风建设方案
2014/05/08 职场文书
公安机关起诉意见书
2015/05/20 职场文书
pytorch 6 batch_train 批训练操作
2021/05/28 Python
MySQL 执行数据库更新update操作的时候数据库卡死了
2022/05/02 MySQL