使用优化器来提升Python程序的执行效率的教程


Posted in Python onApril 02, 2015

如果不首先想想这句Knuth的名言,就开始进行优化工作是不明智的。可是,你很快写出来加入一些特性的代码,可能会很丑陋,你需要注意了。这篇文章就是为这时候准备的。

那么接下来就是一些很有用的工具和模式来快速优化Python。它的主要目的很简单:尽快发现瓶颈,修复它们并且确认你修复了它们。
写一个测试

在你开始优化前,写一个高级测试来证明原来代码很慢。你可能需要采用一些最小值数据集来复现它足够慢。通常一两个显示运行时秒的程序就足够处理一些改进的地方了。

有一些基础测试来保证你的优化没有改变原有代码的行为也是很必要的。你也能够在很多次运行测试来优化代码的时候稍微修改这些测试的基准。

那么现在,我们来来看看优化工具把。
简单的计时器

计时器很简单,这是一个最灵活的记录执行时间的方法。你可以把它放到任何地方并且副作用很小。运行你自己的计时器非常简单,并且你可以将其定制,使它以你期望的方式工作。例如,你个简单的计时器如下:

import time
 
def timefunc(f):
 def f_timer(*args, **kwargs):
  start = time.time()
  result = f(*args, **kwargs)
  end = time.time()
  print f.__name__, 'took', end - start, 'time'
  return result
 return f_timer
 
def get_number():
 for x in xrange(5000000):
  yield x
 
@timefunc
def expensive_function():
 for x in get_number():
  i = x ^ x ^ x
 return 'some result!'
 
# prints "expensive_function took 0.72583088875 seconds"
result = expensive_function()

当然,你可以用上下文管理来让它功能更加强大,添加一些检查点或者一些其他的功能:
 

import time
 
class timewith():
 def __init__(self, name=''):
  self.name = name
  self.start = time.time()
 
 @property
 def elapsed(self):
  return time.time() - self.start
 
 def checkpoint(self, name=''):
  print '{timer} {checkpoint} took {elapsed} seconds'.format(
   timer=self.name,
   checkpoint=name,
   elapsed=self.elapsed,
  ).strip()
 
 def __enter__(self):
  return self
 
 def __exit__(self, type, value, traceback):
  self.checkpoint('finished')
  pass
 
def get_number():
 for x in xrange(5000000):
  yield x
 
def expensive_function():
 for x in get_number():
  i = x ^ x ^ x
 return 'some result!'
 
# prints something like:
# fancy thing done with something took 0.582462072372 seconds
# fancy thing done with something else took 1.75355315208 seconds
# fancy thing finished took 1.7535982132 seconds
with timewith('fancy thing') as timer:
 expensive_function()
 timer.checkpoint('done with something')
 expensive_function()
 expensive_function()
 timer.checkpoint('done with something else')
 
# or directly
timer = timewith('fancy thing')
expensive_function()
timer.checkpoint('done with something')

计时器还需要你做一些挖掘。包装一些更高级的函数,并且确定瓶颈在哪,然后深入的函数里,能够不停的重现。当你发现一些不合适的代码,修复它,然后测试一遍以确认它被修复了。

一些小技巧:不要忘了好用的timeit模块!它对小块代码做基准测试而不是实际调查更加有用。

  •     Timer 优点:很容易理解和实现。也非常容易在修改后进行比较。对于很多语言都适用。
  •     Timer 缺点:有时候对于非常复杂的代码有点过于简单,你可能会花更多时间放置或移动引用代码而不是修复问题!

内建优化器

启用内建的优化器就像是用一门大炮。它非常强大,但是有点不太好用,使用和解释起来比较复杂。

你可以了解更多关于profile模块的东西,但是它的基础是非常简单的:你能够启用和禁用优化器,而且它能打印所有的函数调用和执行时间。它能给你编译和打印出输出。一个简单的装饰器如下:
 

import cProfile
 
def do_cprofile(func):
 def profiled_func(*args, **kwargs):
  profile = cProfile.Profile()
  try:
   profile.enable()
   result = func(*args, **kwargs)
   profile.disable()
   return result
  finally:
   profile.print_stats()
 return profiled_func
 
def get_number():
 for x in xrange(5000000):
  yield x
 
@do_cprofile
def expensive_function():
 for x in get_number():
  i = x ^ x ^ x
 return 'some result!'
 
# perform profiling
result = expensive_function()

在上面代码的情况下,你应该看到有些东西在终端打印出来,打印的内容如下:
 

5000003 function calls in 1.626 seconds
 
 Ordered by: standard name
 
 ncalls tottime percall cumtime percall filename:lineno(function)
 5000001 0.571 0.000 0.571 0.000 timers.py:92(get_number)
  1 1.055 1.055 1.626 1.626 timers.py:96(expensive_function)
  1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

你可以看到,它给出了不同函数的调用次数,但它遗漏了一些关键的信息:是哪个函数让运行这么慢?

可是,这对于基础优化来说是个好的开始。有时候甚至能用更少的精力找到解决方案。我经常用它来在深入挖掘究竟是哪个函数慢或者调用次数过多之前来调试程序。

  •     内建优点:没有额外的依赖并且非常快。对于快速的高等级检查非常有用。
  •     内建缺点:信息相对有限,需要进一步的调试;报告有点不太直接,尤其是对于复杂的代码。

Line Profiler

如果内建的优化器是一门大炮,那么line profiler可以看作是一门离子加农炮。它非常的重量级和强大。

在这个例子里,我们会用非常棒的line_profiler库。为了容易使用,我们会再次用装饰器包装一下,这种简单的方法也可以防止把它放在生产代码里。
 

try:
 from line_profiler import LineProfiler
 
 def do_profile(follow=[]):
  def inner(func):
   def profiled_func(*args, **kwargs):
    try:
     profiler = LineProfiler()
     profiler.add_function(func)
     for f in follow:
      profiler.add_function(f)
     profiler.enable_by_count()
     return func(*args, **kwargs)
    finally:
     profiler.print_stats()
   return profiled_func
  return inner
 
except ImportError:
 def do_profile(follow=[]):
  "Helpful if you accidentally leave in production!"
  def inner(func):
   def nothing(*args, **kwargs):
    return func(*args, **kwargs)
   return nothing
  return inner
 
def get_number():
 for x in xrange(5000000):
  yield x
 
@do_profile(follow=[get_number])
def expensive_function():
 for x in get_number():
  i = x ^ x ^ x
 return 'some result!'
 
result = expensive_function()

如果你运行上面的代码,你就可以看到一下的报告:
 

Timer unit: 1e-06 s
 
File: test.py
Function: get_number at line 43
Total time: 4.44195 s
 
Line #  Hits   Time Per Hit % Time Line Contents
==============================================================
 43           def get_number():
 44 5000001  2223313  0.4  50.1  for x in xrange(5000000):
 45 5000000  2218638  0.4  49.9   yield x
 
File: test.py
Function: expensive_function at line 47
Total time: 16.828 s
 
Line #  Hits   Time Per Hit % Time Line Contents
==============================================================
 47           def expensive_function():
 48 5000001  14090530  2.8  83.7  for x in get_number():
 49 5000000  2737480  0.5  16.3   i = x ^ x ^ x
 50   1   0  0.0  0.0  return 'some result!'

你可以看到,有一个非常详细的报告,能让你完全洞悉代码运行的情况。不想内建的cProfiler,它能计算话在语言核心特性的时间,比如循环和导入并且给出在不同的行花费的时间。

这些细节能让我们更容易理解函数内部。如果你在研究某个第三方库,你可以直接将其导入并加上装饰器来分析它。

一些小技巧:只装饰你的测试函数并将问题函数作为接下来的参数。

  •      Line Profiler 优点:有非常直接和详细的报告。能够追踪第三方库里的函数。
  •      Line Profiler 缺点:因为它会让代码比真正运行时慢很多,所以不要用它来做基准测试。这是额外的需求。

总结和最佳实践

你应该用更简单的工具来对测试用例进行根本的检查,并且用更慢但能显示更多细节的line_profiler来深入到函数内部。

九成情况下,你可能会发现在一个函数里循环调用或一个错误的数据结构消耗了90%的时间。一些调整工具是非常适合你的。

如果你仍然觉得这太慢,而是用一些你自己的秘密武器,如比较属性访问技术或调整平衡检查技术。你也可以用如下的方法:

1.忍受缓慢或者缓存它们

2.重新思考整个实现

3.更多使用优化的数据结构

4.写一个C扩展

注意了,优化代码是种罪恶的快感!用合适的方法来为你的Python代码加速很有意思,但是注意不要破坏了本身的逻辑。可读的代码比运行速度更重要。先把它缓存起来再进行优化其实更好。

Python 相关文章推荐
python中urlparse模块介绍与使用示例
Nov 19 Python
django中静态文件配置static的方法
May 20 Python
如何用Python合并lmdb文件
Jul 02 Python
python判断数字是否是超级素数幂
Sep 27 Python
python 实现调用子文件下的模块方法
Dec 07 Python
Python 确定多项式拟合/回归的阶数实例
Dec 29 Python
python的xpath获取div标签内html内容,实现innerhtml功能的方法
Jan 02 Python
利用 Flask 动态展示 Pyecharts 图表数据方法小结
Sep 04 Python
关于numpy中eye和identity的区别详解
Nov 29 Python
opencv python Canny边缘提取实现过程解析
Feb 03 Python
关于Python 中的时间处理包datetime和arrow的方法详解
Mar 19 Python
python3处理word文档实例分析
Dec 01 Python
使用Python脚本对Linux服务器进行监控的教程
Apr 02 #Python
在Python编程过程中用单元测试法调试代码的介绍
Apr 02 #Python
用Python的Django框架完成视频处理任务的教程
Apr 02 #Python
用map函数来完成Python并行任务的简单示例
Apr 02 #Python
对于Python异常处理慎用“except:pass”建议
Apr 02 #Python
Python的设计模式编程入门指南
Apr 02 #Python
介绍Python中的一些高级编程技巧
Apr 02 #Python
You might like
使用PHP获取当前url路径的函数以及服务器变量
2013/06/29 PHP
PHP基于CURL进行POST数据上传实例
2014/11/10 PHP
php使用Jpgraph绘制复杂X-Y坐标图的方法
2015/06/10 PHP
PHP错误处理函数
2016/04/03 PHP
CI框架实现cookie登陆的方法详解
2016/05/18 PHP
laravel5.1框架model类查询的实现方法
2019/10/08 PHP
兼容IE、FireFox、Chrome等浏览器的xml处理函数js代码
2011/11/30 Javascript
Javascript算符的优先级介绍
2013/03/20 Javascript
JavaScript运动减速效果实例分析
2015/08/04 Javascript
ES6中如何使用Set和WeakSet
2016/03/10 Javascript
jquery实现跳到底部,回到顶部效果的简单实例(类似锚)
2016/07/10 Javascript
jQuery查找节点方法完整实例
2016/09/13 Javascript
JS+CSS实现下拉刷新/上拉加载插件
2017/03/31 Javascript
vue 1.x 交互实现仿百度下拉列表示例
2017/10/21 Javascript
在vue组件中使用axios的方法
2018/03/16 Javascript
微信小程序新闻网站详情页实例代码
2020/01/10 Javascript
谈谈JavaScript令人迷惑的==与+
2020/08/31 Javascript
[42:52]Optic vs Serenity 2018国际邀请赛淘汰赛BO3 第二场 8.22
2018/08/23 DOTA
Python遍历目录的4种方法实例介绍
2015/04/13 Python
Python+matplotlib+numpy实现在不同平面的二维条形图
2018/01/02 Python
python如何查看微信消息撤回
2018/11/27 Python
python scp 批量同步文件的实现方法
2019/01/03 Python
python异步实现定时任务和周期任务的方法
2019/06/29 Python
Pandas_cum累积计算和rolling滚动计算的用法详解
2019/07/04 Python
python matplotlib拟合直线的实现
2019/11/19 Python
什么是CSS3 HSLA色彩模式?HSLA模拟渐变色条
2016/04/26 HTML / CSS
详解使用双缓存解决Canvas clearRect引起的闪屏问题
2019/04/29 HTML / CSS
Armor Lux法国官方网站:水手服装、成衣和内衣
2020/05/26 全球购物
优秀驾驶员先进事迹材料
2014/05/04 职场文书
感恩祖国演讲稿
2014/09/09 职场文书
推普周国旗下讲话稿
2014/09/21 职场文书
教师求职信怎么写
2015/03/20 职场文书
HTML+CSS+JS实现图片的瀑布流布局的示例代码
2021/04/22 HTML / CSS
go结构体嵌套的切片数组操作
2021/04/28 Golang
MySQL注入基础练习
2021/05/30 MySQL
剑指Offer之Java算法习题精讲二叉树的构造和遍历
2022/03/21 Java/Android