Python机器学习工具scikit-learn的使用笔记


Posted in Python onJanuary 28, 2021

scikit-learn 是基于 Python 语言的机器学习工具

  • 简单高效的数据挖掘和数据分析工具
  • 可供大家在各种环境中重复使用
  • 建立在 NumPy ,SciPy 和 matplotlib 上
  • 开源,可商业使用 - BSD许可证

sklearn 中文文档:http://www.scikitlearn.com.cn/

官方文档:http://scikit-learn.org/stable/

sklearn官方文档的类容和结构如下:

Python机器学习工具scikit-learn的使用笔记

sklearn是基于numpy和scipy的一个机器学习算法库,设计的非常优雅,它让我们能够使用同样的接口来实现所有不同的算法调用。

sklearn库的四大机器学习算法:分类,回归,聚类,降维。其中:

  • 常用的回归:线性、决策树、SVM、KNN ;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
  • 常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
  • 常用聚类:k均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN
  • 常用降维:LinearDiscriminantAnalysis、PCA

     还包含了特征提取、数据处理和模型评估三大模块。
     同时sklearn内置了大量数据集,节省了获取和整理数据集的时间。 
使用sklearn进行机器学习的步骤一般分为:导入模块-创建数据-建立模型-训练-预测五步。
以下为代码笔记

一、数据获取
*****************
"""
 
##1.1 导入sklearn数据集
from sklearn import datasets
 
iris = datasets.load.iris() #导入数据集
X = iris.data  #获得其特征向量
y = iris.target # 获得样本label
 
##1.2 创建数据集
from sklearn.datasets.samples_generator import make_classification
 
X, y = make_classification(n_samples=6, n_features=5, n_informative=2,
  n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
  random_state=20)
 
# n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
 
# 查看数据集
for x_,y_ in zip(X,y):
  print(y_,end=': ')
  print(x_)
"""
0: [-0.6600737 -0.0558978  0.82286793 1.1003977 -0.93493796]
1: [ 0.4113583  0.06249216 -0.90760075 -1.41296696 2.059838 ]
1: [ 1.52452016 -0.01867812 0.20900899 1.34422289 -1.61299022]
0: [-1.25725859 0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172 0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011 0.06754955 -1.02805579 -0.83132182 0.93286635]
"""
 
"""
*****************
二、数据预处理
*****************
"""
from sklearn import preprocessing
 
##2.1 数据归一化
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
 
# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来
 
#2.2 正则化
X = [[ 1., -1., 2.],
  [ 2., 0., 0.],
  [ 0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')
 
print(X_normalized)
"""                  
array([[ 0.40..., -0.40..., 0.81...],
    [ 1. ..., 0. ..., 0. ...],
    [ 0. ..., 0.70..., -0.70...]])
"""
 
## 2.3 One-Hot编码
data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()
 
"""
*****************
三、数据集拆分
*****************
"""
# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签
 
test_size:
float-获得多大比重的测试样本 (默认:0.25)

int - 获得多少个测试样本
 
train_size: 同test_size
 
random_state:

int - 随机种子(种子固定,实验可复现)


shuffle - 是否在分割之前对数据进行洗牌(默认True)
 
返回
---
分割后的列表,长度=2*len(arrays),

(train-test split)
"""
 
"""
*****************
四、定义模型
*****************
"""
## 模型常用属性和工?呢
# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)
 
# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc
 
## 4.1 线性回归
from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
  copy_X=True, n_jobs=1)
"""
参数
---
  fit_intercept:是否计算截距。False-模型没有截距
  normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
   n_jobs:指定线程数
"""
 
## 4.2 逻辑回归
from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0,
  fit_intercept=True, intercept_scaling=1, class_weight=None,
  random_state=None, solver='liblinear', max_iter=100, multi_class='ovr',
  verbose=0, warm_start=False, n_jobs=1)
 
"""参数
---
  penalty:使用指定正则化项(默认:l2)
  dual: n_samples > n_features取False(默认)
  C:正则化强度的反,值越小正则化强度越大
  n_jobs: 指定线程数
  random_state:随机数生成器
  fit_intercept: 是否需要常量
"""
 
## 4.3 朴素贝叶斯算法NB
from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
  alpha:平滑参数
  fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
  class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
  binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""
 
## 4.4 决策树DT
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion='gini', max_depth=None,
  min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
  max_features=None, random_state=None, max_leaf_nodes=None,
  min_impurity_decrease=0.0, min_impurity_split=None,
   class_weight=None, presort=False)
"""参数
---
  criterion :特征选择准则gini/entropy
  max_depth:树的最大深度,None-尽量下分
  min_samples_split:分裂内部节点,所需要的最小样本树
  min_samples_leaf:叶子节点所需要的最小样本数
  max_features: 寻找最优分割点时的最大特征数
  max_leaf_nodes:优先增长到最大叶子节点数
  min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""
 
 
## 4.5 支持向量机
from sklearn.svm import SVC
model = SVC(C=1.0, kernel='rbf', gamma='auto')
"""参数
---
  C:误差项的惩罚参数C
  gamma: 核相关系数。浮点数,If gamma is ‘auto' then 1/n_features will be used instead.
"""
 
## 4.6 k近邻算法 KNN
from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
  n_neighbors: 使用邻居的数目
  n_jobs:并行任务数
"""
 
## 4.7 多层感知机
from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
  hidden_layer_sizes: 元祖
  activation:激活函数
  solver :优化算法{‘lbfgs', ‘sgd', ‘adam'}
  alpha:L2惩罚(正则化项)参数。
"""
 
 
"""
*****************
五、模型评估与选择
*****************
"""
 
## 5.1 交叉验证
from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
  model:拟合数据的模型
  cv : k-fold
  scoring: 打分参数-‘accuracy'、‘f1'、‘precision'、‘recall' 、‘roc_auc'、'neg_log_loss'等等
"""
 
## 5.2 检验曲线
from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
  model:用于fit和predict的对象
  X, y: 训练集的特征和标签
  param_name:将被改变的参数的名字
  param_range: 参数的改变范围
  cv:k-fold
  
返回值
---
  train_score: 训练集得分(array)
  test_score: 验证集得分(array)
"""
 
 
"""
*****************
六、保存模型
*****************
"""
## 6.1 保存为pickle文件
import pickle
 
# 保存模型
with open('model.pickle', 'wb') as f:
  pickle.dump(model, f)
 
# 读取模型
with open('model.pickle', 'rb') as f:
  model = pickle.load(f)
model.predict(X_test)
 
 
## 6.2 sklearn方法自带joblib
from sklearn.externals import joblib
 
# 保存模型
joblib.dump(model, 'model.pickle')
 
#载入模型
model = joblib.load('model.pickle')

以上就是Python机器学习工具scikit-learn的使用笔记的详细内容,更多关于Python机器学习工具scikit-learn的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python GAE、Django导出Excel的方法
Nov 24 Python
Python使用ftplib实现简易FTP客户端的方法
Jun 03 Python
在Python的Django框架中显示对象子集的方法
Jul 21 Python
在Mac OS系统上安装Python的Pillow库的教程
Nov 20 Python
Python 专题四 文件基础知识
Mar 20 Python
Numpy数据类型转换astype,dtype的方法
Jun 09 Python
Python使用matplotlib和pandas实现的画图操作【经典示例】
Jun 13 Python
对python3新增的byte类型详解
Dec 04 Python
python3在同一行内输入n个数并用列表保存的例子
Jul 20 Python
详解Python time库的使用
Oct 10 Python
python在linux环境下安装skimage的示例代码
Oct 14 Python
Pygame如何使用精灵和碰撞检测
Nov 17 Python
K近邻法(KNN)相关知识总结以及如何用python实现
Jan 28 #Python
Python3中对json格式数据的分析处理
Jan 28 #Python
Python实现微信表情包炸群功能
Jan 28 #Python
Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)
Jan 28 #Python
python如何构建mock接口服务
Jan 28 #Python
pytest fixtures装饰器的使用和如何控制用例的执行顺序
Jan 28 #Python
如何用tempfile库创建python进程中的临时文件
Jan 28 #Python
You might like
php下连接ftp实现文件的上传、下载、删除文件实例代码
2010/06/03 PHP
php微信公众开发之获取周边酒店信息的方法
2014/12/22 PHP
yii2 modal弹窗之ActiveForm ajax表单异步验证
2016/06/13 PHP
用javascript将数据库中的TEXT类型数据动态赋值到TEXTAREA中
2007/04/20 Javascript
extjs ColumnChart设置不同的颜色实现代码
2013/05/17 Javascript
经过绑定元素时会多次触发mouseover和mouseout事件
2014/02/28 Javascript
javascript实现多栏闭合展开式广告位菜单效果实例
2015/08/05 Javascript
学习javascript的闭包,原型,和匿名函数之旅
2015/10/18 Javascript
JQuery标签页效果实例详解
2015/12/24 Javascript
Js与Jq获取浏览器和对象值的方法
2016/03/18 Javascript
Javascript 基础---Ajax入门必看
2016/07/06 Javascript
jquery attr()设置和获取属性值实例教程
2016/09/25 Javascript
基于SpringMVC+Bootstrap+DataTables实现表格服务端分页、模糊查询
2016/10/30 Javascript
原生js实现下拉框功能(支持键盘事件)
2017/01/13 Javascript
mui开发中获取单选按钮、复选框的值(实例讲解)
2017/07/24 Javascript
Vue 拦截器对token过期处理方法
2018/01/23 Javascript
jQuery带控制按钮轮播图插件
2020/07/31 jQuery
浅谈Vue static 静态资源路径 和 style问题
2020/11/07 Javascript
vue $router和$route的区别详解
2020/12/02 Vue.js
JavaScript中跨域问题的深入理解
2021/03/04 Javascript
Python判断文件或文件夹是否存在的三种方法
2017/07/27 Python
Python基于csv模块实现读取与写入csv数据的方法
2018/01/18 Python
Python使用numpy实现BP神经网络
2018/03/10 Python
django 实现将本地图片存入数据库,并能显示在web上的示例
2019/08/07 Python
Atom Python 配置Python3 解释器的方法
2019/08/28 Python
Python 如何优雅的将数字转化为时间格式的方法
2019/09/26 Python
教你如何一步一步用Canvas写一个贪吃蛇
2018/10/22 HTML / CSS
html5 外链式实现加减乘除的代码
2019/09/04 HTML / CSS
说说在weblogic中开发消息Bean时的persistent与non-persisten的差别
2013/04/07 面试题
大学生职业生涯规划书参考模板
2014/03/05 职场文书
农村产权制度改革实施方案
2014/03/21 职场文书
学前班评语大全
2014/05/04 职场文书
正科级干部考察材料
2014/05/29 职场文书
会计专业自荐书
2014/07/08 职场文书
销售竞赛活动方案
2014/08/23 职场文书
2015学习委员工作总结范文
2015/04/03 职场文书