python对json的相关操作实例详解


Posted in Python onJanuary 04, 2017

本文实例分析了python对json的相关操作。分享给大家供大家参考,具体如下:

什么是json:

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。

JSON建构于两种结构:

“名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。

值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。

这些都是常见的数据结构。事实上大部分现代计算机语言都以某种形式支持它们。这使得一种数据格式在同样基于这些结构的编程语言之间交换成为可能。

json官方说明参见:http://json.org/

Python操作json的标准api库参考:http://docs.python.org/library/json.html

对简单数据类型的encoding 和 decoding:

使用简单的json.dumps方法对简单数据类型进行编码,例如:

import json
obj = [[1,2,3],123,123.123,'abc',{'key1':(1,2,3),'key2':(4,5,6)}]
encodedjson = json.dumps(obj)
print repr(obj)
print encodedjson

输出:

[[1, 2, 3], 123, 123.123, 'abc', {'key2': (4, 5, 6), 'key1': (1, 2, 3)}]
[[1, 2, 3], 123, 123.123, "abc", {"key2": [4, 5, 6], "key1": [1, 2, 3]}]

通过输出的结果可以看出,简单类型通过encode之后跟其原始的repr()输出结果非常相似,但是有些数据类型进行了改变,例如上例中的元组则转换为了列表。在json的编码过程中,会存在从python原始类型向json类型的转化过程,具体的转化对照如下:

python对json的相关操作实例详解

json.dumps()方法返回了一个str对象encodedjson,我们接下来在对encodedjson进行decode,得到原始数据,需要使用的json.loads()函数:

decodejson = json.loads(encodedjson)
print type(decodejson)
print decodejson[4]['key1']
print decodejson

输出:

<type 'list'>
[1, 2, 3]
[[1, 2, 3], 123, 123.123, u'abc', {u'key2': [4, 5, 6], u'key1': [1, 2, 3]}]

loads方法返回了原始的对象,但是仍然发生了一些数据类型的转化。比如,上例中‘abc'转化为了unicode类型。从json到python的类型转化对照如下:

python对json的相关操作实例详解

json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的),separators,indent等参数。

排序功能使得存储的数据更加有利于观察,也使得对json输出的对象进行比较,例如:

data1 = {'b':789,'c':456,'a':123}
data2 = {'a':123,'b':789,'c':456}
d1 = json.dumps(data1,sort_keys=True)
d2 = json.dumps(data2)
d3 = json.dumps(data2,sort_keys=True)
print d1
print d2
print d3
print d1==d2
print d1==d3

输出:

{"a": 123, "b": 789, "c": 456}
{"a": 123, "c": 456, "b": 789}
{"a": 123, "b": 789, "c": 456}
False
True

上例中,本来data1和data2数据应该是一样的,但是由于dict存储的无序特性,造成两者无法比较。因此两者可以通过排序后的结果进行存储就避免了数据比较不一致的情况发生,但是排序后再进行存储,系统必定要多做一些事情,也一定会因此造成一定的性能消耗,所以适当排序是很重要的。

indent参数是缩进的意思,它可以使得数据存储的格式变得更加优雅。

data1 = {'b':789,'c':456,'a':123}
d1 = json.dumps(data1,sort_keys=True,indent=4)
print d1

输出:

{
 "a": 123,
 "b": 789,
 "c": 456
}

输出的数据被格式化之后,变得可读性更强,但是却是通过增加一些冗余的空白格来进行填充的。json主要是作为一种数据通信的格式存在的,而网络通信是很在乎数据的大小的,无用的空格会占据很多通信带宽,所以适当时候也要对数据进行压缩。separator参数可以起到这样的作用,该参数传递是一个元组,包含分割对象的字符串。

print 'DATA:', repr(data)
print 'repr(data)  :', len(repr(data))
print 'dumps(data)  :', len(json.dumps(data))
print 'dumps(data, indent=2) :', len(json.dumps(data, indent=4))
print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))

输出:

DATA: {'a': 123, 'c': 456, 'b': 789}
repr(data)  : 30
dumps(data)  : 30
dumps(data, indent=2) : 46
dumps(data, separators): 25

通过移除多余的空白符,达到了压缩数据的目的,而且效果还是比较明显的。

另一个比较有用的dumps参数是skipkeys,默认为False。 dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,则会比较优雅的过度。

data = {'b':789,'c':456,(1,2):123}
print json.dumps(data,skipkeys=True)

输出:

{"c": 456, "b": 789}

处理自己的数据类型

json模块不仅可以处理普通的python内置类型,也可以处理我们自定义的数据类型,而往往处理自定义的对象是很常用的。

首先,我们定义一个类Person。

class Person(object):
 def __init__(self,name,age):
 self.name = name
 self.age = age
 def __repr__(self):
 return 'Person Object name : %s , age : %d' % (self.name,self.age)
if __name__ == '__main__':
 p = Person('Peter',22)
 print p

如果直接通过json.dumps方法对Person的实例进行处理的话,会报错,因为json无法支持这样的自动转化。通过上面所提到的json和python的类型转化对照表,可以发现,object类型是和dict相关联的,所以我们需要把我们自定义的类型转化为dict,然后再进行处理。这里,有两种方法可以使用。

方法一:自己写转化函数

'''
Created on 2011-12-14
@author: Peter
'''
import Person
import json
p = Person.Person('Peter',22)
def object2dict(obj):
 #convert object to a dict
 d = {}
 d['__class__'] = obj.__class__.__name__
 d['__module__'] = obj.__module__
 d.update(obj.__dict__)
 return d
def dict2object(d):
 #convert dict to object
 if'__class__' in d:
 class_name = d.pop('__class__')
 module_name = d.pop('__module__')
 module = __import__(module_name)
 class_ = getattr(module,class_name)
 args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
 inst = class_(**args) #create new instance
 else:
 inst = d
 return inst
d = object2dict(p)
print d
#{'age': 22, '__module__': 'Person', '__class__': 'Person', 'name': 'Peter'}
o = dict2object(d)
print type(o),o
#<class 'Person.Person'> Person Object name : Peter , age : 22
dump = json.dumps(p,default=object2dict)
print dump
#{"age": 22, "__module__": "Person", "__class__": "Person", "name": "Peter"}
load = json.loads(dump,object_hook = dict2object)
print load
#Person Object name : Peter , age : 22

上面代码已经写的很清楚了,实质就是自定义object类型和dict类型进行转化。object2dict函数将对象模块名、类名以及__dict__存储在dict对象里,并返回。dict2object函数则是反解出模块名、类名、参数,创建新的对象并返回。在json.dumps 方法中增加default参数,该参数表示在转化过程中调用指定的函数,同样在decode过程中json.loads方法增加object_hook,指定转化函数。

方法二:继承JSONEncoder和JSONDecoder类,覆写相关方法

JSONEncoder类负责编码,主要是通过其default函数进行转化,我们可以override该方法。同理对于JSONDecoder。

'''
Created on 2011-12-14
@author: Peter
'''
import Person
import json
p = Person.Person('Peter',22)
class MyEncoder(json.JSONEncoder):
 def default(self,obj):
 #convert object to a dict
 d = {}
 d['__class__'] = obj.__class__.__name__
 d['__module__'] = obj.__module__
 d.update(obj.__dict__)
 return d
class MyDecoder(json.JSONDecoder):
 def __init__(self):
 json.JSONDecoder.__init__(self,object_hook=self.dict2object)
 def dict2object(self,d):
 #convert dict to object
 if'__class__' in d:
  class_name = d.pop('__class__')
  module_name = d.pop('__module__')
  module = __import__(module_name)
  class_ = getattr(module,class_name)
  args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
  inst = class_(**args) #create new instance
 else:
  inst = d
 return inst
d = MyEncoder().encode(p)
o = MyDecoder().decode(d)
print d
print type(o), o

对于JSONDecoder类方法,稍微有点不同,但是改写起来也不是很麻烦。看代码应该就比较清楚了。

 

Python 相关文章推荐
Python实现的数据结构与算法之双端队列详解
Apr 22 Python
Tensorflow之Saver的用法详解
Apr 23 Python
Python实现base64编码的图片保存到本地功能示例
Jun 22 Python
Python 中的lambda函数介绍
Oct 10 Python
python射线法判断一个点在图形区域内外
Jun 28 Python
代码实例讲解python3的编码问题
Jul 08 Python
解决Django连接db遇到的问题
Aug 29 Python
PyCharm下载和安装详细步骤
Dec 17 Python
Cython编译python为so 代码加密示例
Dec 23 Python
在Mac中PyCharm配置python Anaconda环境过程图解
Mar 11 Python
Django视图类型总结
Feb 17 Python
Python OpenCV 图像平移的实现示例
Jun 04 Python
python的random模块及加权随机算法的python实现方法
Jan 04 #Python
python 实现红包随机生成算法的简单实例
Jan 04 #Python
Python 模板引擎的注入问题分析
Jan 01 #Python
python getopt详解及简单实例
Dec 30 #Python
浅谈编码,解码,乱码的问题
Dec 30 #Python
Python实现将数据库一键导出为Excel表格的实例
Dec 30 #Python
python脚本实现数据导出excel格式的简单方法(推荐)
Dec 30 #Python
You might like
mysql时区问题
2008/03/26 PHP
php checkdate、getdate等日期时间函数操作详解
2010/03/11 PHP
PHP连接局域网MYSQL数据库的简单实例
2013/08/26 PHP
微信接口生成带参数的二维码
2017/07/31 PHP
laravel如何开启跨域功能示例详解
2017/08/31 PHP
浅析php如何实现爬取数据原理
2018/09/27 PHP
PHP7 错误处理机制修改
2021/03/09 PHP
理解Javascript_09_Function与Object
2010/10/16 Javascript
js实现checkbox全选和反选示例
2014/05/01 Javascript
js和jquery中循环的退出和继续学习记录
2014/09/06 Javascript
js通过iframe加载外部网页的实现代码
2015/04/05 Javascript
AngularJS入门教程之模块化操作用法示例
2016/11/02 Javascript
vue使用vue-cli快速创建工程
2017/07/28 Javascript
微信小程序wx.request的简单封装
2019/11/13 Javascript
element 中 el-menu 组件的无限极循环思路代码详解
2020/04/26 Javascript
Vue实现点击当前行变色
2020/12/14 Vue.js
Scrapy-redis爬虫分布式爬取的分析和实现
2017/02/07 Python
Python制作词云的方法
2018/01/03 Python
Python中实现最小二乘法思路及实现代码
2018/01/04 Python
python框架中flask知识点总结
2018/08/17 Python
python3对拉勾数据进行可视化分析的方法详解
2019/04/03 Python
python实时监控logstash日志代码
2020/04/27 Python
Tensorflow全局设置可见GPU编号操作
2020/06/30 Python
Python collections模块的使用方法
2020/10/09 Python
香港永安旅游网:Wing On Travel
2017/04/10 全球购物
外贸业务员的岗位职责
2013/11/23 职场文书
联欢晚会主持词
2014/03/25 职场文书
购房委托书
2014/10/15 职场文书
检讨书范文1000字
2015/01/28 职场文书
全国助残日活动总结
2015/05/11 职场文书
2015年会计人员工作总结
2015/05/22 职场文书
2016年教师师德师风承诺书
2016/03/25 职场文书
JavaScript实现班级抽签小程序
2021/05/19 Javascript
教你怎么用Python操作MySql数据库
2021/05/31 Python
如何用Python搭建gRPC服务
2021/06/30 Python
Mysql中where与on的区别及何时使用详析
2021/08/04 MySQL