使用pytorch实现论文中的unet网络


Posted in Python onJune 24, 2020

设计神经网络的一般步骤:

1. 设计框架

2. 设计骨干网络

Unet网络设计的步骤:

1. 设计Unet网络工厂模式

2. 设计编解码结构

3. 设计卷积模块

4. unet实例模块

Unet网络最重要的特征:

1. 编解码结构。

2. 解码结构,比FCN更加完善,采用连接方式。

3. 本质是一个框架,编码部分可以使用很多图像分类网络。

示例代码:

import torch
import torch.nn as nn

class Unet(nn.Module):
 #初始化参数:Encoder,Decoder,bridge
 #bridge默认值为无,如果有参数传入,则用该参数替换None
 def __init__(self,Encoder,Decoder,bridge = None):
  super(Unet,self).__init__()
  self.encoder = Encoder(encoder_blocks)
  self.decoder = Decoder(decoder_blocks)
  self.bridge = bridge
 def forward(self,x):
  res = self.encoder(x)
  out,skip = res[0],res[1,:]
  if bridge is not None:
   out = bridge(out)
  out = self.decoder(out,skip)
  return out
#设计编码模块
class Encoder(nn.Module):
 def __init__(self,blocks):
  super(Encoder,self).__init__()
  #assert:断言函数,避免出现参数错误
  assert len(blocks) > 0
  #nn.Modulelist():模型列表,所有的参数可以纳入网络,但是没有forward函数
  self.blocks = nn.Modulelist(blocks)
 def forward(self,x):
  skip = []
  for i in range(len(self.blocks) - 1):
   x = self.blocks[i](x)
   skip.append(x)
  res = [self.block[i+1](x)]
  #列表之间可以通过+号拼接
  res += skip
  return res
#设计Decoder模块
class Decoder(nn.Module):
 def __init__(self,blocks):
  super(Decoder, self).__init__()
  assert len(blocks) > 0
  self.blocks = nn.Modulelist(blocks)
 def ceter_crop(self,skips,x):
  _,_,height1,width1 = skips.shape()
  _,_,height2,width2 = x.shape()
  #对图像进行剪切处理,拼接的时候保持对应size参数一致
  ht,wt = min(height1,height2),min(width1,width2)
  dh1 = (height1 - height2)//2 if height1 > height2 else 0
  dw1 = (width1 - width2)//2 if width1 > width2 else 0
  dh2 = (height2 - height1)//2 if height2 > height1 else 0
  dw2 = (width2 - width1)//2 if width2 > width1 else 0
  return skips[:,:,dh1:(dh1 + ht),dw1:(dw1 + wt)],\
    x[:,:,dh2:(dh2 + ht),dw2 : (dw2 + wt)]

 def forward(self, skips,x,reverse_skips = True):
  assert len(skips) == len(blocks) - 1
  if reverse_skips is True:
   skips = skips[: : -1]
  x = self.blocks[0](x)
  for i in range(1, len(self.blocks)):
   skip = skips[i-1]
   x = torch.cat(skip,x,1)
   x = self.blocks[i](x)
  return x
#定义了一个卷积block
def unet_convs(in_channels,out_channels,padding = 0):
 #nn.Sequential:与Modulelist相比,包含了forward函数
 return nn.Sequential(
  nn.Conv2d(in_channels, out_channels, kernal_size = 3, padding = padding, bias = False),
  nn.BatchNorm2d(outchannels),
  nn.ReLU(inplace = True),
  nn.Conv2d(in_channels, out_channels, kernal_size=3, padding=padding, bias=False),
  nn.BatchNorm2d(outchannels),
  nn.ReLU(inplace=True),
 )
#实例化Unet模型
def unet(in_channels,out_channels):
 encoder_blocks = [unet_convs(in_channels, 64),\
      nn.Sequential(nn.Maxpool2d(kernal_size = 2, stride = 2, ceil_mode = True),\
         unet_convs(64,128)), \
      nn.Sequential(nn.Maxpool2d(kernal_size=2, stride=2, ceil_mode=True), \
         unet_convs(128, 256)),
      nn.Sequential(nn.Maxpool2d(kernal_size=2, stride=2, ceil_mode=True), \
         unet_convs(256, 512)),
      ]
 bridge = nn.Sequential(unet_convs(512, 1024))
 decoder_blocks = [nn.conTranpose2d(1024, 512), \
      nn.Sequential(unet_convs(1024, 512),
         nn.conTranpose2d(512, 256)),\
      nn.Sequential(unet_convs(512, 256),
         nn.conTranpose2d(256, 128)), \
      nn.Sequential(unet_convs(512, 256),
         nn.conTranpose2d(256, 128)), \
      nn.Sequential(unet_convs(256, 128),
         nn.conTranpose2d(128, 64))
      ]
 return Unet(encoder_blocks,decoder_blocks,bridge)

补充知识:Pytorch搭建U-Net网络

U-Net: Convolutional Networks for Biomedical Image Segmentation

使用pytorch实现论文中的unet网络

import torch.nn as nn
import torch
from torch import autograd
from torchsummary import summary

class DoubleConv(nn.Module):
 def __init__(self, in_ch, out_ch):
  super(DoubleConv, self).__init__()
  self.conv = nn.Sequential(
   nn.Conv2d(in_ch, out_ch, 3, padding=0),
   nn.BatchNorm2d(out_ch),
   nn.ReLU(inplace=True),
   nn.Conv2d(out_ch, out_ch, 3, padding=0),
   nn.BatchNorm2d(out_ch),
   nn.ReLU(inplace=True)
  )

 def forward(self, input):
  return self.conv(input)

class Unet(nn.Module):
 def __init__(self, in_ch, out_ch):
  super(Unet, self).__init__()
  self.conv1 = DoubleConv(in_ch, 64)
  self.pool1 = nn.MaxPool2d(2)
  self.conv2 = DoubleConv(64, 128)
  self.pool2 = nn.MaxPool2d(2)
  self.conv3 = DoubleConv(128, 256)
  self.pool3 = nn.MaxPool2d(2)
  self.conv4 = DoubleConv(256, 512)
  self.pool4 = nn.MaxPool2d(2)
  self.conv5 = DoubleConv(512, 1024)
  # 逆卷积,也可以使用上采样
  self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
  self.conv6 = DoubleConv(1024, 512)
  self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
  self.conv7 = DoubleConv(512, 256)
  self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
  self.conv8 = DoubleConv(256, 128)
  self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
  self.conv9 = DoubleConv(128, 64)
  self.conv10 = nn.Conv2d(64, out_ch, 1)

 def forward(self, x):
  c1 = self.conv1(x)
  crop1 = c1[:,:,88:480,88:480]
  p1 = self.pool1(c1)
  c2 = self.conv2(p1)
  crop2 = c2[:,:,40:240,40:240]
  p2 = self.pool2(c2)
  c3 = self.conv3(p2)
  crop3 = c3[:,:,16:120,16:120]
  p3 = self.pool3(c3)
  c4 = self.conv4(p3)
  crop4 = c4[:,:,4:60,4:60]
  p4 = self.pool4(c4)
  c5 = self.conv5(p4)
  up_6 = self.up6(c5)
  merge6 = torch.cat([up_6, crop4], dim=1)
  c6 = self.conv6(merge6)
  up_7 = self.up7(c6)
  merge7 = torch.cat([up_7, crop3], dim=1)
  c7 = self.conv7(merge7)
  up_8 = self.up8(c7)
  merge8 = torch.cat([up_8, crop2], dim=1)
  c8 = self.conv8(merge8)
  up_9 = self.up9(c8)
  merge9 = torch.cat([up_9, crop1], dim=1)
  c9 = self.conv9(merge9)
  c10 = self.conv10(c9)
  out = nn.Sigmoid()(c10)
  return out

if __name__=="__main__":
 test_input=torch.rand(1, 1, 572, 572)
 model=Unet(in_ch=1, out_ch=2)
 summary(model, (1,572,572))
 ouput=model(test_input)
 print(ouput.size())
----------------------------------------------------------------
  Layer (type)    Output Shape   Param #
================================================================
   Conv2d-1   [-1, 64, 570, 570]    640
  BatchNorm2d-2   [-1, 64, 570, 570]    128
    ReLU-3   [-1, 64, 570, 570]    0
   Conv2d-4   [-1, 64, 568, 568]   36,928
  BatchNorm2d-5   [-1, 64, 568, 568]    128
    ReLU-6   [-1, 64, 568, 568]    0
  DoubleConv-7   [-1, 64, 568, 568]    0
   MaxPool2d-8   [-1, 64, 284, 284]    0
   Conv2d-9  [-1, 128, 282, 282]   73,856
  BatchNorm2d-10  [-1, 128, 282, 282]    256
    ReLU-11  [-1, 128, 282, 282]    0
   Conv2d-12  [-1, 128, 280, 280]   147,584
  BatchNorm2d-13  [-1, 128, 280, 280]    256
    ReLU-14  [-1, 128, 280, 280]    0
  DoubleConv-15  [-1, 128, 280, 280]    0
  MaxPool2d-16  [-1, 128, 140, 140]    0
   Conv2d-17  [-1, 256, 138, 138]   295,168
  BatchNorm2d-18  [-1, 256, 138, 138]    512
    ReLU-19  [-1, 256, 138, 138]    0
   Conv2d-20  [-1, 256, 136, 136]   590,080
  BatchNorm2d-21  [-1, 256, 136, 136]    512
    ReLU-22  [-1, 256, 136, 136]    0
  DoubleConv-23  [-1, 256, 136, 136]    0
  MaxPool2d-24   [-1, 256, 68, 68]    0
   Conv2d-25   [-1, 512, 66, 66]  1,180,160
  BatchNorm2d-26   [-1, 512, 66, 66]   1,024
    ReLU-27   [-1, 512, 66, 66]    0
   Conv2d-28   [-1, 512, 64, 64]  2,359,808
  BatchNorm2d-29   [-1, 512, 64, 64]   1,024
    ReLU-30   [-1, 512, 64, 64]    0
  DoubleConv-31   [-1, 512, 64, 64]    0
  MaxPool2d-32   [-1, 512, 32, 32]    0
   Conv2d-33   [-1, 1024, 30, 30]  4,719,616
  BatchNorm2d-34   [-1, 1024, 30, 30]   2,048
    ReLU-35   [-1, 1024, 30, 30]    0
   Conv2d-36   [-1, 1024, 28, 28]  9,438,208
  BatchNorm2d-37   [-1, 1024, 28, 28]   2,048
    ReLU-38   [-1, 1024, 28, 28]    0
  DoubleConv-39   [-1, 1024, 28, 28]    0
 ConvTranspose2d-40   [-1, 512, 56, 56]  2,097,664
   Conv2d-41   [-1, 512, 54, 54]  4,719,104
  BatchNorm2d-42   [-1, 512, 54, 54]   1,024
    ReLU-43   [-1, 512, 54, 54]    0
   Conv2d-44   [-1, 512, 52, 52]  2,359,808
  BatchNorm2d-45   [-1, 512, 52, 52]   1,024
    ReLU-46   [-1, 512, 52, 52]    0
  DoubleConv-47   [-1, 512, 52, 52]    0
 ConvTranspose2d-48  [-1, 256, 104, 104]   524,544
   Conv2d-49  [-1, 256, 102, 102]  1,179,904
  BatchNorm2d-50  [-1, 256, 102, 102]    512
    ReLU-51  [-1, 256, 102, 102]    0
   Conv2d-52  [-1, 256, 100, 100]   590,080
  BatchNorm2d-53  [-1, 256, 100, 100]    512
    ReLU-54  [-1, 256, 100, 100]    0
  DoubleConv-55  [-1, 256, 100, 100]    0
 ConvTranspose2d-56  [-1, 128, 200, 200]   131,200
   Conv2d-57  [-1, 128, 198, 198]   295,040
  BatchNorm2d-58  [-1, 128, 198, 198]    256
    ReLU-59  [-1, 128, 198, 198]    0
   Conv2d-60  [-1, 128, 196, 196]   147,584
  BatchNorm2d-61  [-1, 128, 196, 196]    256
    ReLU-62  [-1, 128, 196, 196]    0
  DoubleConv-63  [-1, 128, 196, 196]    0
 ConvTranspose2d-64   [-1, 64, 392, 392]   32,832
   Conv2d-65   [-1, 64, 390, 390]   73,792
  BatchNorm2d-66   [-1, 64, 390, 390]    128
    ReLU-67   [-1, 64, 390, 390]    0
   Conv2d-68   [-1, 64, 388, 388]   36,928
  BatchNorm2d-69   [-1, 64, 388, 388]    128
    ReLU-70   [-1, 64, 388, 388]    0
  DoubleConv-71   [-1, 64, 388, 388]    0
   Conv2d-72   [-1, 2, 388, 388]    130
================================================================
Total params: 31,042,434
Trainable params: 31,042,434
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.25
Forward/backward pass size (MB): 3280.59
Params size (MB): 118.42
Estimated Total Size (MB): 3400.26
----------------------------------------------------------------
torch.Size([1, 2, 388, 388])

以上这篇使用pytorch实现论文中的unet网络就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
浅谈python类属性的访问、设置和删除方法
Jul 25 Python
超简单使用Python换脸实例
Mar 27 Python
numpy concatenate数组拼接方法示例介绍
May 27 Python
详解使用PyInstaller将Pygame库编写的小游戏程序打包为exe文件
Aug 23 Python
python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法
Aug 27 Python
解决Atom安装Hydrogen无法运行python3的问题
Aug 28 Python
python列表推导和生成器表达式知识点总结
Jan 10 Python
通过python连接Linux命令行代码实例
Feb 18 Python
解析python 中/ 和 % 和 //(地板除)
Jun 28 Python
django rest framework 过滤时间操作
Jul 12 Python
Python使用lambda抛出异常实现方法解析
Aug 20 Python
Python通过yagmail实现发送邮件代码解析
Oct 27 Python
python连接mysql有哪些方法
Jun 24 #Python
pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)
Jun 24 #Python
Python Tornado核心及相关原理详解
Jun 24 #Python
如何使用Python处理HDF格式数据及可视化问题
Jun 24 #Python
pytorch SENet实现案例
Jun 24 #Python
利用PyTorch实现VGG16教程
Jun 24 #Python
python安装读取grib库总结(推荐)
Jun 24 #Python
You might like
ThinkPHP使用心得分享-ThinkPHP + Ajax 实现2级联动下拉菜单
2014/05/15 PHP
php内嵌函数用法实例
2015/03/20 PHP
php封装的验证码类分享
2017/02/26 PHP
swoole和websocket简单聊天室开发
2017/11/18 PHP
关于Anemometer图形化显示MySQL慢日志的工具搭建及使用的详细介绍
2020/07/13 PHP
如何在Web页面上直接打开、编辑、创建Office文档
2007/03/12 Javascript
JS 添加网页桌面快捷方式的代码详细整理
2012/12/27 Javascript
jquery实现鼠标拖动图片效果示例代码
2014/01/09 Javascript
JavaScript分秒倒计时器实现方法
2015/02/02 Javascript
javascript强制点击广告的方法
2015/02/06 Javascript
jQuery中attr()与prop()函数用法实例详解(附用法区别)
2015/12/29 Javascript
js多功能分页组件layPage使用方法详解
2016/05/19 Javascript
js轮盘抽奖实例分析
2020/04/17 Javascript
BootStrap 实现各种样式的进度条效果
2016/12/07 Javascript
AngularJS路由Ui-router模块用法示例
2017/05/29 Javascript
基于js 字符串indexof与search方法的区别(详解)
2017/12/04 Javascript
React事件处理的机制及原理
2018/12/03 Javascript
实现Vue的markdown文档可以在线运行的方法示例
2018/12/11 Javascript
JavaScript变速动画函数封装添加任意多个属性
2019/04/03 Javascript
微信小程序实现卡片层叠滑动效果
2019/06/21 Javascript
Vue实现点击按钮复制文本内容的例子
2019/11/09 Javascript
[40:13]Ti4 冒泡赛第二天 iG vs NEWBEE 2
2014/07/15 DOTA
[42:32]DOTA2上海特级锦标赛B组资格赛#2 Fnatic VS Spirit第二局
2016/02/27 DOTA
[16:01]夜魇凡尔赛茶话会 第二期01:你比划我猜
2021/03/11 DOTA
python中print()函数的“,”与java中System.out.print()函数中的“+”功能详解
2017/11/24 Python
基于anaconda下强大的conda命令介绍
2018/06/11 Python
通过python顺序修改文件名字的方法
2018/07/11 Python
对python requests发送json格式数据的实例详解
2018/12/19 Python
Python ATM功能实现代码实例
2020/03/19 Python
如何利用Python写个坦克大战
2020/11/18 Python
CSS3毛玻璃效果(blur)有白边问题的解决方法
2016/11/15 HTML / CSS
个人简历自我评价
2014/02/02 职场文书
创业女性典型材料
2014/05/02 职场文书
党员学习正风肃纪思想汇报
2014/09/12 职场文书
开天辟地观后感
2015/06/09 职场文书
Java中Dijkstra(迪杰斯特拉)算法
2022/05/20 Java/Android