pytorch之inception_v3的实现案例


Posted in Python onJanuary 06, 2020

如下所示:

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure

数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理

data_dir = "/home/dell/Desktop/data/切割图像"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "inception" 
# Number of classes in the dataset
num_classes = 2#两类数据1,2

# Batch size for training (change depending on how much memory you have)
batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = True

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch inception')
parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()

训练函数

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):

  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, InceptionV3!") 
  with open("acc.txt", "w") as f1:
    with open("log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%50==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history

 #是否更新参数
def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "inception":
    """ Inception v3 
    Be careful, expects (299,299) sized images and has auxiliary output
    """
    model_ft = models.inception_v3(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    # Handle the auxilary net
    num_ftrs = model_ft.AuxLogits.fc.in_features
    model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
    # Handle the primary net
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs,num_classes)
    input_size = 299

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 


#准备数据
data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
是否加载之前训练过的模型
we='/home/dell/Desktop/dj/inception_050.pth'
model_ft.load_state_dict(torch.load(we))
'''
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()

# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

'''
#随机初始化时的训练程序
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))

# Plot the training curves of validation accuracy vs. number 
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []

ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
'''

以上这篇pytorch之inception_v3的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现将xml导入至excel
Nov 20 Python
python实现批量监控网站
Sep 09 Python
Django之模型层多表操作的实现
Jan 08 Python
python学生管理系统
Jan 30 Python
Python实现语音识别和语音合成功能
Sep 20 Python
Python迭代器Iterable判断方法解析
Mar 16 Python
Django 项目布局方法(值得推荐)
Mar 22 Python
关于python 跨域处理方式详解
Mar 28 Python
Pytho爬虫中Requests设置请求头Headers的方法
Sep 22 Python
python 对xml解析的示例
Feb 27 Python
浅析python中特殊文件和特殊函数
Feb 24 Python
python套接字socket通信
Apr 01 Python
pytorch之添加BN的实现
Jan 06 #Python
PyTorch学习:动态图和静态图的例子
Jan 06 #Python
pytorch动态网络以及权重共享实例
Jan 06 #Python
selenium中get_cookies()和add_cookie()的用法详解
Jan 06 #Python
pytorch中的自定义反向传播,求导实例
Jan 06 #Python
PyTorch中 tensor.detach() 和 tensor.data 的区别详解
Jan 06 #Python
6行Python代码实现进度条效果(Progress、tqdm、alive-progress​​​​​​​和PySimpleGUI库)
Jan 06 #Python
You might like
php实现从ftp服务器上下载文件树到本地电脑的程序
2009/02/10 PHP
做了CDN获取用户真实IP的函数代码(PHP与Asp设置方式)
2013/04/13 PHP
PHP查找与搜索数组元素方法总结
2015/06/12 PHP
PHP编程中的__clone()方法使用详解
2015/11/27 PHP
PHP 中 var_export、print_r、var_dump 调试中的区别
2018/06/19 PHP
laravel框架中表单请求类型和CSRF防护实例分析
2019/11/23 PHP
SharePoint 客户端对象模型 (一) ECMA Script
2011/05/22 Javascript
拉动滚动条加载数据的jquery代码
2012/05/03 Javascript
Jquery写一个鼠标拖动效果实现原理与代码
2012/12/24 Javascript
JS测试显示屏分辨率以及屏幕尺寸的方法
2013/11/22 Javascript
JS实现响应鼠标点击动画渐变弹出层效果代码
2016/03/25 Javascript
AngularJS上拉加载问题解决方法
2016/05/23 Javascript
jQuery文件上传控件 Uploadify 详解
2016/06/20 Javascript
js 能实现监听F5页面刷新子iframe 而父页面不刷新的方法
2016/11/09 Javascript
基于js实现二级下拉联动
2016/12/17 Javascript
Angular中点击li标签实现更改颜色的核心代码
2017/12/08 Javascript
微信小程序用户信息encryptedData详解
2018/08/24 Javascript
vue elementUI tree树形控件获取父节点ID的实例
2018/09/12 Javascript
在vue项目中,将juery设置为全局变量的方法
2018/09/25 Javascript
vue中filters 传入两个参数 / 使用两个filters的实现方法
2019/07/15 Javascript
layui监听工具栏的实例(操作列表按钮)
2019/09/10 Javascript
在Python中利用Into包整洁地进行数据迁移的教程
2015/03/30 Python
使用Python实现企业微信的自动打卡功能
2019/04/30 Python
使用pygame写一个古诗词填空通关游戏
2019/12/03 Python
python datetime时间格式的相互转换问题
2020/06/11 Python
python使用QQ邮箱实现自动发送邮件
2020/06/22 Python
CSS3动画之利用requestAnimationFrame触发重新播放功能
2019/09/11 HTML / CSS
ONLY德国官方在线商店:购买时尚女装
2017/09/21 全球购物
COACH德国官方网站:纽约现代奢侈品牌,1941年
2018/06/09 全球购物
英语国培研修感言
2014/02/13 职场文书
员工入职担保书范文
2014/04/01 职场文书
《路旁的橡树》教学反思
2014/04/07 职场文书
学习雷锋做美德少年寄语大全
2014/04/09 职场文书
党支部遵守党的政治纪律情况对照检查材料
2014/09/26 职场文书
商标侵权律师函
2015/05/27 职场文书
详解Python中*args和**kwargs的使用
2022/04/07 Python