利用PyTorch实现VGG16教程


Posted in Python onJune 24, 2020

我就废话不多说了,大家还是直接看代码吧~

import torch
import torch.nn as nn
import torch.nn.functional as F
class VGG16(nn.Module):
 
 def __init__(self):
  super(VGG16, self).__init__()
  
  # 3 * 224 * 224
  self.conv1_1 = nn.Conv2d(3, 64, 3) # 64 * 222 * 222
  self.conv1_2 = nn.Conv2d(64, 64, 3, padding=(1, 1)) # 64 * 222* 222
  self.maxpool1 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 64 * 112 * 112
  
  self.conv2_1 = nn.Conv2d(64, 128, 3) # 128 * 110 * 110
  self.conv2_2 = nn.Conv2d(128, 128, 3, padding=(1, 1)) # 128 * 110 * 110
  self.maxpool2 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 128 * 56 * 56
  
  self.conv3_1 = nn.Conv2d(128, 256, 3) # 256 * 54 * 54
  self.conv3_2 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54
  self.conv3_3 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54
  self.maxpool3 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 256 * 28 * 28
  
  self.conv4_1 = nn.Conv2d(256, 512, 3) # 512 * 26 * 26
  self.conv4_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26
  self.conv4_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26
  self.maxpool4 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 14 * 14
  
  self.conv5_1 = nn.Conv2d(512, 512, 3) # 512 * 12 * 12
  self.conv5_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12
  self.conv5_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12
  self.maxpool5 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 7 * 7
  # view
  
  self.fc1 = nn.Linear(512 * 7 * 7, 4096)
  self.fc2 = nn.Linear(4096, 4096)
  self.fc3 = nn.Linear(4096, 1000)
  # softmax 1 * 1 * 1000
  
 def forward(self, x):
  
  # x.size(0)即为batch_size
  in_size = x.size(0)
  
  out = self.conv1_1(x) # 222
  out = F.relu(out)
  out = self.conv1_2(out) # 222
  out = F.relu(out)
  out = self.maxpool1(out) # 112
  
  out = self.conv2_1(out) # 110
  out = F.relu(out)
  out = self.conv2_2(out) # 110
  out = F.relu(out)
  out = self.maxpool2(out) # 56
  
  out = self.conv3_1(out) # 54
  out = F.relu(out)
  out = self.conv3_2(out) # 54
  out = F.relu(out)
  out = self.conv3_3(out) # 54
  out = F.relu(out)
  out = self.maxpool3(out) # 28
  
  out = self.conv4_1(out) # 26
  out = F.relu(out)
  out = self.conv4_2(out) # 26
  out = F.relu(out)
  out = self.conv4_3(out) # 26
  out = F.relu(out)
  out = self.maxpool4(out) # 14
  
  out = self.conv5_1(out) # 12
  out = F.relu(out)
  out = self.conv5_2(out) # 12
  out = F.relu(out)
  out = self.conv5_3(out) # 12
  out = F.relu(out)
  out = self.maxpool5(out) # 7
  
  # 展平
  out = out.view(in_size, -1)
  
  out = self.fc1(out)
  out = F.relu(out)
  out = self.fc2(out)
  out = F.relu(out)
  out = self.fc3(out)
  
  out = F.log_softmax(out, dim=1)
  return out

补充知识:Pytorch实现VGG(GPU版)

看代码吧~

import torch
from torch import nn
from torch import optim
from PIL import Image
import numpy as np

print(torch.cuda.is_available())
device = torch.device('cuda:0')
path="/content/drive/My Drive/Colab Notebooks/data/dog_vs_cat/"

train_X=np.empty((2000,224,224,3),dtype="float32")
train_Y=np.empty((2000,),dtype="int")
train_XX=np.empty((2000,3,224,224),dtype="float32")

for i in range(1000):
 file_path=path+"cat."+str(i)+".jpg"
 image=Image.open(file_path)
 resized_image = image.resize((224, 224), Image.ANTIALIAS)
 img=np.array(resized_image)
 train_X[i,:,:,:]=img
 train_Y[i]=0

for i in range(1000):
 file_path=path+"dog."+str(i)+".jpg"
 image = Image.open(file_path)
 resized_image = image.resize((224, 224), Image.ANTIALIAS)
 img = np.array(resized_image)
 train_X[i+1000, :, :, :] = img
 train_Y[i+1000] = 1

train_X /= 255

index = np.arange(2000)
np.random.shuffle(index)

train_X = train_X[index, :, :, :]
train_Y = train_Y[index]

for i in range(3):
 train_XX[:,i,:,:]=train_X[:,:,:,i]
# 创建网络

class Net(nn.Module):

 def __init__(self):
  super(Net, self).__init__()
  self.conv1 = nn.Sequential(
   nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True),
   nn.MaxPool2d(kernel_size=2,stride=2)
  )
  self.conv2 = nn.Sequential(
   nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.BatchNorm2d(128,eps=1e-5,momentum=0.1,affine=True),
   nn.MaxPool2d(kernel_size=2,stride=2)
  )
  self.conv3 = nn.Sequential(
   nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.BatchNorm2d(256,eps=1e-5, momentum=0.1, affine=True),
   nn.MaxPool2d(kernel_size=2, stride=2)
  )
  self.conv4 = nn.Sequential(
   nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.BatchNorm2d(512, eps=1e-5, momentum=0.1, affine=True),
   nn.MaxPool2d(kernel_size=2, stride=2)
  )
  self.conv5 = nn.Sequential(
   nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
   nn.ReLU(),
   nn.BatchNorm2d(512, eps=1e-5, momentum=0.1, affine=True),
   nn.MaxPool2d(kernel_size=2, stride=2)
  )
  self.dense1 = nn.Sequential(
   nn.Linear(7*7*512,4096),
   nn.ReLU(),
   nn.Linear(4096,4096),
   nn.ReLU(),
   nn.Linear(4096,2)
  )

 def forward(self, x):
  x=self.conv1(x)
  x=self.conv2(x)
  x=self.conv3(x)
  x=self.conv4(x)
  x=self.conv5(x)
  x=x.view(-1,7*7*512)
  x=self.dense1(x)
  return x

batch_size=16
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0005)

train_loss = []
for epoch in range(10):

 for i in range(2000//batch_size):
  x=train_XX[i*batch_size:i*batch_size+batch_size]
  y=train_Y[i*batch_size:i*batch_size+batch_size]

  x = torch.from_numpy(x)  #(batch_size,input_feature_shape)
  y = torch.from_numpy(y)  #(batch_size,label_onehot_shape)
  x = x.cuda()
  y = y.long().cuda()

  out = net(x)

  loss = criterion(out, y)   # 计算两者的误差
  optimizer.zero_grad()    # 清空上一步的残余更新参数值
  loss.backward()     # 误差反向传播, 计算参数更新值
  optimizer.step()     # 将参数更新值施加到 net 的 parameters 上
  train_loss.append(loss.item())

  print(epoch, i*batch_size, np.mean(train_loss))
  train_loss=[]

total_correct = 0
for i in range(2000):
 x = train_XX[i].reshape(1,3,224,224)
 y = train_Y[i]
 x = torch.from_numpy(x)

 x = x.cuda()
 out = net(x).cpu()
 out = out.detach().numpy()
 pred=np.argmax(out)
 if pred==y:
  total_correct += 1
 print(total_correct)

acc = total_correct / 2000.0
print('test acc:', acc)

torch.cuda.empty_cache()

将上面代码中batch_size改为32,训练次数改为100轮,得到如下准确率

利用PyTorch实现VGG16教程

过拟合了~

以上这篇利用PyTorch实现VGG16教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
提升Python程序运行效率的6个方法
Mar 31 Python
python使用电子邮件模块smtplib的方法
Aug 28 Python
利用Python读取文件的四种不同方法比对
May 18 Python
Python2.7读取PDF文件的方法示例
Jul 13 Python
Python实现中一次读取多个值的方法
Apr 22 Python
django session完成状态保持的方法
Nov 27 Python
Python多线程应用于自动化测试操作示例
Dec 06 Python
pytorch 调整某一维度数据顺序的方法
Dec 08 Python
itchat-python搭建微信机器人(附示例)
Jun 11 Python
python取余运算符知识点详解
Jun 27 Python
解决pytorch 模型复制的一些问题
Mar 03 Python
Pytorch反向传播中的细节-计算梯度时的默认累加操作
Jun 05 Python
python安装读取grib库总结(推荐)
Jun 24 #Python
Pytorch mask-rcnn 实现细节分享
Jun 24 #Python
在Pytorch中使用Mask R-CNN进行实例分割操作
Jun 24 #Python
OpenCV+python实现实时目标检测功能
Jun 24 #Python
基于Python下载网络图片方法汇总代码实例
Jun 24 #Python
Python 分布式缓存之Reids数据类型操作详解
Jun 24 #Python
PyTorch中model.zero_grad()和optimizer.zero_grad()用法
Jun 24 #Python
You might like
PHP文件下载类
2006/12/06 PHP
Linux Apache PHP Oracle 安装配置(具体操作步骤)
2013/06/17 PHP
phpmyadmin config.inc.php配置示例
2013/08/27 PHP
PHP GD库生成图像的几个函数总结
2014/11/19 PHP
PHP全功能无变形图片裁剪操作类与用法示例
2017/01/10 PHP
yii2安装详细流程
2018/05/23 PHP
javascript forEach通用循环遍历方法
2010/10/11 Javascript
非阻塞动态加载javascript广告实现代码
2010/11/17 Javascript
AJAX异步从优酷专辑中采集所有视频及信息(JavaScript代码)
2010/11/20 Javascript
IE8的JavaScript点击事件(onclick)不兼容的解决方法
2013/11/22 Javascript
jquery插件NProgress.js制作网页加载进度条
2015/06/05 Javascript
Vue 全局loading组件实例详解
2018/05/29 Javascript
jquery获取元素到屏幕四周可视距离的方法
2018/09/05 jQuery
详解Vue组件插槽的使用以及调用组件内的方法
2018/11/13 Javascript
vue+elementUI组件table实现前端分页功能
2020/11/15 Javascript
vue+elementUI中表格高亮或字体颜色改变操作
2020/11/02 Javascript
python正则表达式re模块详解
2014/06/25 Python
Python中unittest模块做UT(单元测试)使用实例
2015/06/12 Python
Python实现文件内容批量追加的方法示例
2017/08/29 Python
浅谈Django中的数据库模型类-models.py(一对一的关系)
2018/05/30 Python
用python生成1000个txt文件的方法
2018/10/25 Python
解决PyCharm不运行脚本,而是运行单元测试的问题
2019/01/17 Python
pyqt5 实现 下拉菜单 + 打开文件的示例代码
2019/06/20 Python
python datetime中strptime用法详解
2019/08/29 Python
Python timeit模块的使用实践
2020/01/13 Python
Python Numpy 控制台完全输出ndarray的实现
2020/02/19 Python
Python函数参数定义及传递方式解析
2020/06/10 Python
html5 Canvas绘制线条 closePath()实例代码
2012/05/10 HTML / CSS
工作交流会欢迎词
2014/01/12 职场文书
信访工作个人总结
2015/03/03 职场文书
简历自荐信范文
2015/03/09 职场文书
酒店工程部经理岗位职责
2015/04/09 职场文书
工厂员工辞职信范文
2015/05/12 职场文书
请病假条范文
2015/08/17 职场文书
Mysql效率优化定位较低sql的两种方式
2021/05/26 MySQL
Pandas 稀疏数据结构的实现
2021/07/25 Python