OpenCV+python实现实时目标检测功能


Posted in Python onJune 24, 2020

环境安装

  1. 安装Anaconda,官网链接Anaconda
  2. 使用conda创建py3.6的虚拟环境,并激活使用
conda create -n py3.6 python=3.6 //创建
	conda activate py3.6 //激活

OpenCV+python实现实时目标检测功能

3.安装依赖numpy和imutils

//用镜像安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple imutils

4.安装opencv

(1)首先下载opencv(网址:opencv),在这里我选择的是opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl 。
(2)下载好后,把它放到任意盘中(这里我放的是D盘),切换到安装目录,执行安装命令:pip install opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl

代码

首先打开一个空文件命名为real_time_object_detection.py,加入以下代码,导入你所需要的包。

# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2

2.我们不需要图像参数,因为在这里我们处理的是视频流和视频——除了以下参数保持不变:
?prototxt:Caffe prototxt 文件路径。
?model:预训练模型的路径。
?confidence:过滤弱检测的最小概率阈值,默认值为 20%。

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

3.初始化类列表和颜色集,我们初始化 CLASS 标签,和相应的随机 COLORS。

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
	"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
	"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
	"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

4.加载自己的模型,并设置自己的视频流。

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()

首先我们加载自己的序列化模型,并且提供对自己的 prototxt文件 和模型文件的引用
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
下一步,我们初始化视频流(来源可以是视频文件或摄像头)。首先,我们启动 VideoStreamvs = VideoStream(src=0).start(),随后等待相机启动time.sleep(2.0),最后开始每秒帧数计算fps = FPS().start()。VideoStream 和 FPS 类是 imutils 包的一部分。

5.遍历每一帧

# loop over the frames from the video stream
while True:
	# grab the frame from the threaded video stream and resize it
	# to have a maximum width of 400 pixels
	frame = vs.read()
	frame = imutils.resize(frame, width=400)

	# grab the frame from the threaded video file stream
	(h, w) = frame.shape[:2]
	blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
		0.007843, (300, 300), 127.5)

	# pass the blob through the network and obtain the detections and
	# predictions
	net.setInput(blob)
	detections = net.forward()

首先,从视频流中读取一帧frame = vs.read(),随后调整它的大小imutils.resize(frame, width=400)。由于我们随后会需要宽度和高度,接着进行抓取(h, w) = frame.shape[:2]。最后将 frame 转换为一个有 dnn 模块的 blob,cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),0.007843, (300, 300), 127.5)
现在,我们设置 blob 为神经网络的输入net.setInput(blob),通过 net 传递输入detections = net.forward()

6.这时,我们已经在输入帧中检测到了目标,现在看看置信度的值,来判断我们能否在目标周围绘制边界框和标签。

# loop over the detections
	for i in np.arange(0, detections.shape[2]):
		# extract the confidence (i.e., probability) associated with
		# the prediction
		confidence = detections[0, 0, i, 2]

		# filter out weak detections by ensuring the `confidence` is
		# greater than the minimum confidence
		if confidence > args["confidence"]:
			# extract the index of the class label from the
			# `detections`, then compute the (x, y)-coordinates of
			# the bounding box for the object
			idx = int(detections[0, 0, i, 1])
			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX, startY, endX, endY) = box.astype("int")

			# draw the prediction on the frame
			label = "{}: {:.2f}%".format(CLASSES[idx],
				confidence * 100)
			cv2.rectangle(frame, (startX, startY), (endX, endY),
				COLORS[idx], 2)
			y = startY - 15 if startY - 15 > 15 else startY + 15
			cv2.putText(frame, label, (startX, y),
				cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

在 detections 内循环,一个图像中可以检测到多个目标。因此我们需要检查置信度。如果置信度足够高(高于阈值),那么将在终端展示预测,并以文本和彩色边界框的形式对图像作出预测。
在 detections 内循环,首先我们提取 confidence 值,confidence = detections[0, 0, i, 2]。如果 confidence 高于最低阈值(if confidence > args["confidence"]:),那么提取类标签索引(idx = int(detections[0, 0, i, 1])),并计算检测到的目标的坐标(box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]))。然后,我们提取边界框的 (x, y) 坐标((startX, startY, endX, endY) = box.astype("int")),将用于绘制矩形和文本。接着构建一个文本 label,包含 CLASS 名称和 confidence(label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100))。还要使用类颜色和之前提取的 (x, y) 坐标在物体周围绘制彩色矩形(cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2))。如果我们希望标签出现在矩形上方,但是如果没有空间,我们将在矩形顶部稍下的位置展示标签(y = startY - 15 if startY - 15 > 15 else startY + 15)。最后,我们使用刚才计算出的 y 值将彩色文本置于帧上(cv2.putText(frame, label, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2))。

7.帧捕捉循环剩余的步骤还包括:展示帧;检查 quit 键;更新 fps 计数器。

# show the output frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF

	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

	# update the FPS counter
	fps.update()

上述代码块简单明了,首先我们展示帧(cv2.imshow("Frame", frame)),然后找到特定按键(key = cv2.waitKey(1) & 0xFF),同时检查「q」键(代表「quit」)是否按下。如果已经按下,则我们退出帧捕捉循环(if key == ord("q"):break),最后更新 fps 计数器(fps.update())。

8.退出了循环(「q」键或视频流结束),我们还要处理以下。

# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

运行文件目录有以下文件:

OpenCV+python实现实时目标检测功能

到文件相应的目录下:cd D:\目标检测\object-detection执行命令:python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel

OpenCV+python实现实时目标检测功能

演示

这里我把演示视频上传到了B站,地址链接目标检测

补充

项目github地址object_detection链接。
本项目要用到MobileNetSSD_deploy.prototxt.txtMobileNetSSD_deploy.caffemodel,可以去github上下载项目运行。

到此这篇关于OpenCV+python实现实时目标检测功能的文章就介绍到这了,更多相关python实现目标检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
用python分割TXT文件成4K的TXT文件
May 23 Python
Python 的 with 语句详解
Jun 13 Python
python中的全局变量用法分析
Jun 09 Python
python将处理好的图像保存到指定目录下的方法
Jan 10 Python
Python Django框架单元测试之文件上传测试示例
May 17 Python
Python从list类型、range()序列简单认识类(class)【可迭代】
May 31 Python
对python3 sort sorted 函数的应用详解
Jun 27 Python
详解python statistics模块及函数用法
Oct 27 Python
Tensorflow 使用pb文件保存(恢复)模型计算图和参数实例详解
Feb 11 Python
基于keras中的回调函数用法说明
Jun 17 Python
python实现三壶谜题的示例详解
Nov 02 Python
Pandas 数据编码的十种方法
Apr 20 Python
基于Python下载网络图片方法汇总代码实例
Jun 24 #Python
Python 分布式缓存之Reids数据类型操作详解
Jun 24 #Python
PyTorch中model.zero_grad()和optimizer.zero_grad()用法
Jun 24 #Python
Pytorch实现将模型的所有参数的梯度清0
Jun 24 #Python
你需要学会的8个Python列表技巧
Jun 24 #Python
pytorch实现查看当前学习率
Jun 24 #Python
在pytorch中动态调整优化器的学习率方式
Jun 24 #Python
You might like
我用php+mysql写的留言本
2006/10/09 PHP
php 5.3.5安装memcache注意事项小结
2011/04/12 PHP
PHP中文处理 中文字符串截取(mb_substr)和获取中文字符串字数
2011/11/10 PHP
浅析PHP微信支付通知的处理方式
2014/05/25 PHP
基于yaf框架和uploadify插件,做的一个导入excel文件,查看并保存数据的功能
2017/01/24 PHP
JQery jstree 大数据量问题解决方法
2010/03/09 Javascript
jQuery 表格插件整理
2010/04/27 Javascript
学习JavaScript的最佳方法分享
2011/10/21 Javascript
判断多个input type=file是否有已经选择好文件的代码
2012/05/23 Javascript
最佳6款用于移动网站开发的jQuery 图片滑块插件小结
2012/07/20 Javascript
JQuery插件开发示例代码
2013/11/06 Javascript
javascript倒计时效果实现
2015/11/12 Javascript
js和jquery实现监听键盘事件示例代码
2020/06/24 Javascript
prototype框架中美元符号$用法分析
2016/01/22 Javascript
jQuery获取父元素及父节点的方法小结
2016/04/14 Javascript
canvas绘制多边形
2017/02/24 Javascript
Extjs表单输入框异步校验的插件实现方法
2017/03/20 Javascript
jQuery插件实现图片轮播效果
2020/10/19 jQuery
[43:24]VG vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.17
2018/08/20 DOTA
python 动态获取当前运行的类名和函数名的方法
2014/04/15 Python
Python使用MD5加密字符串示例
2014/08/22 Python
Python打包可执行文件的方法详解
2016/09/19 Python
Python基于多线程操作数据库相关问题分析
2018/07/11 Python
浅析python3中的os.path.dirname(__file__)的使用
2018/08/30 Python
Python实现删除排序数组中重复项的两种方法示例
2019/01/31 Python
Django 1.10以上版本 url 配置注意事项详解
2019/08/05 Python
基于nexus3配置Python仓库过程详解
2020/06/15 Python
pytorch 查看cuda 版本方式
2020/06/23 Python
CSS3 透明色 RGBA使用介绍
2013/08/06 HTML / CSS
TripAdvisor西班牙官方网站:全球领先的旅游网站
2018/01/10 全球购物
日本卡普空电视游戏软件公司官方购物网站:e-CAPCOM
2018/07/17 全球购物
德国大型箱包和皮具商店:Koffer
2019/10/01 全球购物
竞选班干部的演讲稿
2014/04/24 职场文书
市委常委会班子党的群众路线教育实践活动整改方案
2014/10/25 职场文书
2015年机关纠风工作总结
2015/05/15 职场文书
详解Java实现数据结构之并查集
2021/06/23 Java/Android