OpenCV+python实现实时目标检测功能


Posted in Python onJune 24, 2020

环境安装

  1. 安装Anaconda,官网链接Anaconda
  2. 使用conda创建py3.6的虚拟环境,并激活使用
conda create -n py3.6 python=3.6 //创建
	conda activate py3.6 //激活

OpenCV+python实现实时目标检测功能

3.安装依赖numpy和imutils

//用镜像安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple imutils

4.安装opencv

(1)首先下载opencv(网址:opencv),在这里我选择的是opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl 。
(2)下载好后,把它放到任意盘中(这里我放的是D盘),切换到安装目录,执行安装命令:pip install opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl

代码

首先打开一个空文件命名为real_time_object_detection.py,加入以下代码,导入你所需要的包。

# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2

2.我们不需要图像参数,因为在这里我们处理的是视频流和视频——除了以下参数保持不变:
?prototxt:Caffe prototxt 文件路径。
?model:预训练模型的路径。
?confidence:过滤弱检测的最小概率阈值,默认值为 20%。

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

3.初始化类列表和颜色集,我们初始化 CLASS 标签,和相应的随机 COLORS。

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
	"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
	"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
	"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

4.加载自己的模型,并设置自己的视频流。

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()

首先我们加载自己的序列化模型,并且提供对自己的 prototxt文件 和模型文件的引用
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
下一步,我们初始化视频流(来源可以是视频文件或摄像头)。首先,我们启动 VideoStreamvs = VideoStream(src=0).start(),随后等待相机启动time.sleep(2.0),最后开始每秒帧数计算fps = FPS().start()。VideoStream 和 FPS 类是 imutils 包的一部分。

5.遍历每一帧

# loop over the frames from the video stream
while True:
	# grab the frame from the threaded video stream and resize it
	# to have a maximum width of 400 pixels
	frame = vs.read()
	frame = imutils.resize(frame, width=400)

	# grab the frame from the threaded video file stream
	(h, w) = frame.shape[:2]
	blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
		0.007843, (300, 300), 127.5)

	# pass the blob through the network and obtain the detections and
	# predictions
	net.setInput(blob)
	detections = net.forward()

首先,从视频流中读取一帧frame = vs.read(),随后调整它的大小imutils.resize(frame, width=400)。由于我们随后会需要宽度和高度,接着进行抓取(h, w) = frame.shape[:2]。最后将 frame 转换为一个有 dnn 模块的 blob,cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),0.007843, (300, 300), 127.5)
现在,我们设置 blob 为神经网络的输入net.setInput(blob),通过 net 传递输入detections = net.forward()

6.这时,我们已经在输入帧中检测到了目标,现在看看置信度的值,来判断我们能否在目标周围绘制边界框和标签。

# loop over the detections
	for i in np.arange(0, detections.shape[2]):
		# extract the confidence (i.e., probability) associated with
		# the prediction
		confidence = detections[0, 0, i, 2]

		# filter out weak detections by ensuring the `confidence` is
		# greater than the minimum confidence
		if confidence > args["confidence"]:
			# extract the index of the class label from the
			# `detections`, then compute the (x, y)-coordinates of
			# the bounding box for the object
			idx = int(detections[0, 0, i, 1])
			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX, startY, endX, endY) = box.astype("int")

			# draw the prediction on the frame
			label = "{}: {:.2f}%".format(CLASSES[idx],
				confidence * 100)
			cv2.rectangle(frame, (startX, startY), (endX, endY),
				COLORS[idx], 2)
			y = startY - 15 if startY - 15 > 15 else startY + 15
			cv2.putText(frame, label, (startX, y),
				cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

在 detections 内循环,一个图像中可以检测到多个目标。因此我们需要检查置信度。如果置信度足够高(高于阈值),那么将在终端展示预测,并以文本和彩色边界框的形式对图像作出预测。
在 detections 内循环,首先我们提取 confidence 值,confidence = detections[0, 0, i, 2]。如果 confidence 高于最低阈值(if confidence > args["confidence"]:),那么提取类标签索引(idx = int(detections[0, 0, i, 1])),并计算检测到的目标的坐标(box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]))。然后,我们提取边界框的 (x, y) 坐标((startX, startY, endX, endY) = box.astype("int")),将用于绘制矩形和文本。接着构建一个文本 label,包含 CLASS 名称和 confidence(label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100))。还要使用类颜色和之前提取的 (x, y) 坐标在物体周围绘制彩色矩形(cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2))。如果我们希望标签出现在矩形上方,但是如果没有空间,我们将在矩形顶部稍下的位置展示标签(y = startY - 15 if startY - 15 > 15 else startY + 15)。最后,我们使用刚才计算出的 y 值将彩色文本置于帧上(cv2.putText(frame, label, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2))。

7.帧捕捉循环剩余的步骤还包括:展示帧;检查 quit 键;更新 fps 计数器。

# show the output frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF

	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

	# update the FPS counter
	fps.update()

上述代码块简单明了,首先我们展示帧(cv2.imshow("Frame", frame)),然后找到特定按键(key = cv2.waitKey(1) & 0xFF),同时检查「q」键(代表「quit」)是否按下。如果已经按下,则我们退出帧捕捉循环(if key == ord("q"):break),最后更新 fps 计数器(fps.update())。

8.退出了循环(「q」键或视频流结束),我们还要处理以下。

# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

运行文件目录有以下文件:

OpenCV+python实现实时目标检测功能

到文件相应的目录下:cd D:\目标检测\object-detection执行命令:python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel

OpenCV+python实现实时目标检测功能

演示

这里我把演示视频上传到了B站,地址链接目标检测

补充

项目github地址object_detection链接。
本项目要用到MobileNetSSD_deploy.prototxt.txtMobileNetSSD_deploy.caffemodel,可以去github上下载项目运行。

到此这篇关于OpenCV+python实现实时目标检测功能的文章就介绍到这了,更多相关python实现目标检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Django框架中方法的访问和查找
Jul 15 Python
python开发之IDEL(Python GUI)的使用方法图文详解
Nov 12 Python
Python+django实现文件下载
Jan 17 Python
Python 中 Virtualenv 和 pip 的简单用法详解
Aug 18 Python
tensorflow实现softma识别MNIST
Mar 12 Python
在PyCharm中实现关闭一个死循环程序的方法
Nov 29 Python
Python Numpy库安装与基本操作示例
Jan 08 Python
python f-string式格式化听语音流程讲解
Jun 18 Python
python频繁写入文件时提速的方法
Jun 26 Python
Python unittest工作原理和使用过程解析
Feb 24 Python
利用python+ffmpeg合并B站视频及格式转换的实例代码
Nov 24 Python
微软开源最强Python自动化神器Playwright(不用写一行代码)
Jan 05 Python
基于Python下载网络图片方法汇总代码实例
Jun 24 #Python
Python 分布式缓存之Reids数据类型操作详解
Jun 24 #Python
PyTorch中model.zero_grad()和optimizer.zero_grad()用法
Jun 24 #Python
Pytorch实现将模型的所有参数的梯度清0
Jun 24 #Python
你需要学会的8个Python列表技巧
Jun 24 #Python
pytorch实现查看当前学习率
Jun 24 #Python
在pytorch中动态调整优化器的学习率方式
Jun 24 #Python
You might like
CodeIgniter php mvc框架 中国网站
2008/05/26 PHP
微信公众号开发之微信公共平台消息回复类实例
2014/11/14 PHP
PHP中调用SVN命令更新网站方法
2015/01/07 PHP
php实现在新浪云中使用imagick生成缩略图并上传的方法
2016/09/26 PHP
laravel5.4利用163邮箱发送邮件的步骤详解
2017/09/22 PHP
PHP7中I/O模型内核剖析详解
2019/04/14 PHP
Thinkphp页面跳转设置跳转等待时间的操作
2019/10/16 PHP
基于jquery实现的服务器验证控件的启用和禁用代码
2010/04/27 Javascript
jQuery中filter(),not(),split()使用方法
2010/07/06 Javascript
JS中表单的使用小结
2014/01/11 Javascript
input:checkbox多选框实现单选效果跟radio一样
2014/06/16 Javascript
Javascript实现div层渐隐效果的方法
2015/05/30 Javascript
js实现跨域的方法实例详解
2015/06/24 Javascript
jQuery无刷新分页完整实例代码
2015/10/27 Javascript
jQuery模拟物体自由落体运动(附演示与demo源码下载)
2016/01/21 Javascript
基于JavaScript实现瀑布流布局(二)
2016/01/26 Javascript
妙用Bootstrap的 popover插件实现校验表单提示功能
2016/08/29 Javascript
Bootstrap导航简单实现代码
2017/03/06 Javascript
AngularJS点击添加样式、点击变色设置的实例代码
2017/07/27 Javascript
浅谈mint-ui loadmore组件注意的问题
2017/11/08 Javascript
Vue组件开发技巧总结
2018/03/04 Javascript
详解用JS添加和删除class类名
2019/03/25 Javascript
Python中最大最小赋值小技巧(分享)
2017/12/23 Python
python得到单词模式的示例
2018/10/15 Python
Python实现获取当前目录下文件名代码详解
2020/03/10 Python
解决django FileFIELD的编码问题
2020/03/30 Python
python爬虫scrapy基于CrawlSpider类的全站数据爬取示例解析
2021/02/20 Python
html5 实现客户端验证上传文件的大小(简单实例)
2016/05/15 HTML / CSS
Waterford美国官网:爱尔兰水晶制品品牌
2017/04/26 全球购物
欧洲顶级的童装奢侈品购物网站:Bambini Fashion(面向全球)
2018/04/24 全球购物
公司捐款倡议书
2014/05/14 职场文书
计算机系本科生求职信
2014/05/31 职场文书
初中学习计划书范文
2014/09/15 职场文书
卢旺达饭店观后感
2015/06/05 职场文书
2019年浪漫婚礼证婚词
2019/06/27 职场文书
Python机器学习算法之决策树算法的实现与优缺点
2021/05/13 Python