python机器学习之决策树分类详解


Posted in Python onDecember 20, 2017

决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴。决策树的结果类似如下图:

python机器学习之决策树分类详解

图中方形方框代表叶节点,带圆边的方框代表决策节点,决策节点与叶节点的不同之处就是决策节点还需要通过判断该节点的状态来进一步分类。

那么如何通过训练数据来得到这样的决策树呢?

这里涉及要信息论中一个很重要的信息度量方式,香农熵。通过香农熵可以计算信息增益。

香农熵的计算公式如下:

python机器学习之决策树分类详解

p(xi)代表数据被分在i类的概率,可以通过计算数据集中i类的个数与总的数据个数之比得到,计算香农熵的python代码如下:

from math import log 


def calcShannonEnt(dataSet): 
  numEntries=len(dataSet) 
  labelCounts={} 
  for featVec in dataSet: 
    currentLabel=featVec[-1] 
    if currentLabel not in labelCounts.keys(): 
      labelCounts[currentLabel]=0 
    labelCounts[currentLabel]+=1 
  shannonEnt=0.0 
  for key in labelCounts: 
    prob=float(labelCounts[key])/numEntries 
    shannonEnt-=prob*log(prob,2) 
  return shannonEnt

一般来说,数据集中,不同的类别越多,即信息量越大,那么熵值越大,通过计算熵,就可以知道选择哪一个特征能够最好的分开数据,这个特征就是一个决策节点。

下面就可以根据训练数据开始构造决策树。

首先编写一个根据给定特征划分数据集的函数:

#划分数据集,返回第axis轴为value值的数据集 
def splitDataSet(dataset,axis,value): 
  retDataSet=[] 
  for featVec in dataset: 
    if featVec[axis]==value: 
      reducedFeatVec=featVec[:] 
      del(reducedFeatVec[axis]) 
      retDataSet.append(reducedFeatVec) 
  return retDataSet

下面找出数据集中能够最好划分数据的那个特征,它的原理是计算经过每一个特征轴划分后的数据的信息增益,信息增益越大,代表通过该特征轴划分是最优的。

#选择最好的数据集划分方式,返回最佳的轴 
def chooseBestFeatureToSplit(dataset): 
  numFeatures=len(dataset[0])-1 
  baseEntrypy=calcShannonEnt(dataset) 
  bestInfoGain=0.0 
  bestFeature=-1 
  for i in range(numFeatures): 
    featList=[example[i] for example in dataset] 
    uniqueVals=set(featList) 
    newEntrypy=0.0 
    for value in uniqueVals: 
      subDataSet=splitDataSet(dataset,i,value) 
      prob=len(subDataSet)/float(len(dataset)) 
      newEntrypy+=prob*calcShannonEnt(subDataSet) 
    infoGain=baseEntrypy-newEntrypy        #计算信息增益,信息增益最大,就是最好的划分 
    if infoGain>bestInfoGain: 
      bestInfoGain=infoGain 
      bestFeature=i 
  return bestFeature

找出最优的划分轴之后,便可以通过递归来构建决策树,递归有两个终止条件,第一个是程序遍历完所有划分数据集的特征轴,第二 个是每个分支下的所有实例都有相同的分类。那么,这里有一个问题,就是当遍历完所有数据集时,分出来的数据还不是同一类别,这种时候,一般选取类别最多的作为该叶节点的分类。

首先编写一个在类别向量中找出类别最多的那一类:

#计算类型列表中,类型最多的类型 
def majorityCnt(classList): 
  classCount={} 
  for vote in classList: 
    if vote not in classCount.keys(): 
      classCount[vote]=0 
    classCount[vote]+=1 
  sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) 
  return sortedClassCount[0][0]

递归创建决策树:

#根据训练数据创建树 
def createTree(dataSet,labels): 
  myLabels=labels[:] 
  classList=[example[-1] for example in dataSet] #类别 
  if classList.count(classList[0])==len(classList):#数据集中都是同类 
    return classList[0] 
  if len(dataSet[0])==1:#训练集中只有一个数据 
    return majorityCnt(classList) 
  bestFeat=chooseBestFeatureToSplit(dataSet) 
  bestFeatLabel=myLabels[bestFeat] 
  myTree={bestFeatLabel:{}} 
  del(myLabels[bestFeat]) 
  featValue=[example[bestFeat] for example in dataSet] 
  uniqueVal=set(featValue) 
  for value in uniqueVal: 
    subLabels=myLabels[:] 
    myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels) 
  return myTree

将上述代码保存到tree.py中,在命令窗口输入以下代码:

>>> dataSet=[[1,1,'yes'], 
       [1,1,'yes'], 
       [1,0,'no'], 
       [0,1,'no'], 
       [0,1,'no']] 
>>> labels=['no sufacing','flippers'] 
>>> tree.createTree(dataSet,labels) 
{'no sufacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

就得到了决策树的结构,可以画出树的结构图

python机器学习之决策树分类详解

上面数据的实际意义是通过生物特征,来判断是否属于鱼类,第一列数据中1代表在水中可以生存,0代表在水中不可以生存。第二列中1代表有脚蹼,0代表没有脚蹼。yes是鱼类,no不是鱼类。label是训练数据中每一列代表的意义。那么通过训练数据我们就构造出了决策树,由图可知,我们首先可以根据第一列特征,即在水中是否可以生存来进行第一步判断,不可以生存的肯定不是鱼类,可以生存的还要看是否有脚蹼,有脚蹼的才是鱼类。

不难看出,决策树最大的优势就是它的数据形式易于理解,分类方式直观。

训练出决策树之后,我们就可以根据根据决策树来对新的测试数据进行分类。

分类代码如下:

#根据决策树分类 
def classify(inputTree,featLabels,testVec): 
  firstStr=inputTree.keys()[0] 
  secondDict=inputTree[firstStr] 
  featIndex=featLabels.index(firstStr) 
  for key in secondDict.keys(): 
    if testVec[featIndex]==key: 
      if type(secondDict[key]).__name__=='dict': 
        classLabel=classify(secondDict[key],featLabels,testVec) 
      else: 
        classLabel=secondDict[key] 
  return classLabel

这里有一个通过决策数算法进行分类的一个实例,眼科医生是如何判断患者需要佩戴隐形眼镜的类型的。

判断的结果有三种,硬材料,软材料和不适合佩戴。

训练数据采用隐形眼镜数据集,数据集来自UCI数据库,它包含了很多患者眼部状况的观察条件以及医生推荐的眼镜类型。

数据集如下:

python机器学习之决策树分类详解

测试代码如下:

def example(): 
  fr=open('lenses.txt') 
  lenses=[inst.strip().split('\t') for inst in fr.readlines()] 
  lensesLabels=['age','prescript','astigmatic','tearRate'] 
  lensesTree=createTree(lenses,lensesLabels) 
  return lensesTree

结果:

python机器学习之决策树分类详解

决策树结构如下:

python机器学习之决策树分类详解

这样,医生便可以一步步的观察来最终得知该患者适合什么材料的隐形眼镜了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现哈希表
Feb 07 Python
python装饰器decorator介绍
Nov 21 Python
Python随机生成数模块random使用实例
Apr 13 Python
tensorflow: 查看 tensor详细数值方法
Jun 13 Python
django创建最简单HTML页面跳转方法
Aug 16 Python
Python 日志logging模块用法简单示例
Oct 18 Python
Python 读取WAV音频文件 画频谱的实例
Mar 14 Python
基于python实现查询ip地址来源
Jun 02 Python
学生如何注册Pycharm专业版以及pycharm的安装
Sep 24 Python
Pandas数据分析的一些常用小技巧
Feb 07 Python
python小程序之飘落的银杏
Apr 17 Python
python中__slots__节约内存的具体做法
Jul 04 Python
python机器学习之神经网络(三)
Dec 20 #Python
python机器学习之神经网络(二)
Dec 20 #Python
PyCharm 常用快捷键和设置方法
Dec 20 #Python
python机器学习之神经网络(一)
Dec 20 #Python
使用python实现ANN
Dec 20 #Python
python 计算数组中每个数字出现多少次--“Bucket”桶的思想
Dec 19 #Python
浅谈Python实现贪心算法与活动安排问题
Dec 19 #Python
You might like
php 三维饼图的实现代码
2008/09/28 PHP
百度工程师讲PHP函数的实现原理及性能分析(三)
2015/05/13 PHP
PHP读取CSV大文件导入数据库的实例
2017/07/24 PHP
Laravel框架实现redis集群的方法分析
2017/09/14 PHP
Expandable "Detail" Table Rows
2007/08/29 Javascript
jtable列中自定义button示例代码
2013/11/21 Javascript
jquery动态添加元素事件失效问题解决方法
2014/05/23 Javascript
javascript算法题:求任意一个1-9位不重复的N位数在该组合中的大小排列序号
2015/04/01 Javascript
浅谈js算法和流程控制
2016/12/29 Javascript
JS简单实现点击按钮或文字显示遮罩层的方法
2017/04/27 Javascript
element-ui中的select下拉列表设置默认值方法
2018/08/24 Javascript
vue cli 3.0 搭建项目的图文教程
2019/05/17 Javascript
vue的webcamjs集成方式
2020/11/16 Javascript
[47:21]Liquid vs TNC Supermajor 胜者组 BO3 第一场 6.4
2018/06/05 DOTA
[01:10:24]DOTA2-DPC中国联赛 正赛 VG vs Aster BO3 第一场 2月28日
2021/03/11 DOTA
Python实现的字典值比较功能示例
2018/01/08 Python
Python读取系统文件夹内所有文件并统计数量的方法
2018/10/23 Python
python psutil模块使用方法解析
2019/08/01 Python
Python面向对象特殊属性及方法解析
2020/09/16 Python
css3.0 图形构成实例练习二
2013/03/19 HTML / CSS
运动会四百米广播稿
2014/01/19 职场文书
企业内部培训方案
2014/02/04 职场文书
文明风采获奖感言
2014/02/18 职场文书
对祖国的寄语大全
2014/04/11 职场文书
学校对教师的评语
2014/04/28 职场文书
勿忘国耻9.18演讲稿(经典篇)
2014/09/14 职场文书
2014年工商所工作总结
2014/12/09 职场文书
2015建军节87周年演讲稿
2015/03/19 职场文书
教师求职信怎么写
2015/03/20 职场文书
2015年全民国防教育日活动总结
2015/03/23 职场文书
小学数学新课改心得体会
2016/01/22 职场文书
PyQt5 显示超清高分辨率图片的方法
2021/04/11 Python
go:垃圾回收GC触发条件详解
2021/04/24 Golang
Python 线程池模块之多线程操作代码
2021/05/20 Python
Vue中插槽slot的使用方法与应用场景详析
2021/06/08 Vue.js
MySQL 1130异常,无法远程登录解决方案详解
2021/08/23 MySQL