python库skimage给灰度图像染色的方法示例


Posted in Python onApril 27, 2020

灰度图像染成红色和黄色

# 1.将灰度图像转换为RGB图像
image = color.gray2rgb(grayscale_image)
# 2.保留红色分量和黄色分量
red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]
# 3.显示图像
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

python库skimage给灰度图像染色的方法示例

HSV图像,H从0到1表示的颜色

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

python库skimage给灰度图像染色的方法示例

将灰度图像染成不同的颜色

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

python库skimage给灰度图像染色的方法示例

完整代码

"""
=========================
Tinting gray-scale images
=========================

It can be useful to artificially tint an image with some color, either to
highlight particular regions of an image or maybe just to liven up a grayscale
image. This example demonstrates image-tinting by scaling RGB values and by
adjusting colors in the HSV color-space.

In 2D, color images are often represented in RGB---3 layers of 2D arrays, where
the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The
simplest way of getting a tinted image is to set each RGB channel to the
grayscale image scaled by a different multiplier for each channel. For example,
multiplying the green and blue channels by 0 leaves only the red channel and
produces a bright red image. Similarly, zeroing-out the blue channel leaves
only the red and green channels, which combine to form yellow.
"""

import matplotlib.pyplot as plt
from skimage import data
from skimage import color
from skimage import img_as_float

grayscale_image = img_as_float(data.camera()[::2, ::2])
image = color.gray2rgb(grayscale_image)

red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

######################################################################
# In many cases, dealing with RGB values may not be ideal. Because of that,
# there are many other `color spaces`_ in which you can represent a color
# image. One popular color space is called HSV, which represents hue (~the
# color), saturation (~colorfulness), and value (~brightness). For example, a
# color (hue) might be green, but its saturation is how intense that green is
# ---where olive is on the low end and neon on the high end.
#
# In some implementations, the hue in HSV goes from 0 to 360, since hues wrap
# around in a circle. In scikit-image, however, hues are float values from 0
# to 1, so that hue, saturation, and value all share the same scale.
#
# .. _color spaces:
#   https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
#
# Below, we plot a linear gradient in the hue, with the saturation and value
# turned all the way up:
import numpy as np

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

######################################################################
# Notice how the colors at the far left and far right are the same. That
# reflects the fact that the hues wrap around like the color wheel (see HSV_
# for more info).
#
# .. _HSV: https://en.wikipedia.org/wiki/HSL_and_HSV
#
# Now, let's create a little utility function to take an RGB image and:
#
# 1. Transform the RGB image to HSV 2. Set the hue and saturation 3.
# Transform the HSV image back to RGB


def colorize(image, hue, saturation=1):
  """ Add color of the given hue to an RGB image.

  By default, set the saturation to 1 so that the colors pop!
  """
  hsv = color.rgb2hsv(image)
  hsv[:, :, 1] = saturation
  hsv[:, :, 0] = hue
  return color.hsv2rgb(hsv)


######################################################################
# Notice that we need to bump up the saturation; images with zero saturation
# are grayscale, so we need to a non-zero value to actually see the color
# we've set.
#
# Using the function above, we plot six images with a linear gradient in the
# hue and a non-zero saturation:

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

######################################################################
# You can combine this tinting effect with numpy slicing and fancy-indexing
# to selectively tint your images. In the example below, we set the hue of
# some rectangles using slicing and scale the RGB values of some pixels found
# by thresholding. In practice, you might want to define a region for tinting
# based on segmentation results or blob detection methods.

from skimage.filters import rank

# Square regions defined as slices over the first two dimensions.
top_left = (slice(100),) * 2
bottom_right = (slice(-100, None),) * 2

sliced_image = image.copy()
sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5)
sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5)

# Create a mask selecting regions with interesting texture.
noisy = rank.entropy(grayscale_image, np.ones((9, 9)))
textured_regions = noisy > 4
# Note that using `colorize` here is a bit more difficult, since `rgb2hsv`
# expects an RGB image (height x width x channel), but fancy-indexing returns
# a set of RGB pixels (# pixels x channel).
masked_image = image.copy()
masked_image[textured_regions, :] *= red_multiplier

fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(sliced_image)
ax2.imshow(masked_image)

plt.show()

######################################################################
# For coloring multiple regions, you may also be interested in
# `skimage.color.label2rgb http://scikit-
# image.org/docs/0.9.x/api/skimage.color.html#label2rgb`_.

python库skimage给灰度图像染色的方法示例

到此这篇关于python库skimage给灰度图像染色的方法示例的文章就介绍到这了,更多相关python 灰度图像染色内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中sys.argv参数用法实例分析
May 20 Python
python网络编程之数据传输UDP实例分析
May 20 Python
python实现在windows服务中新建进程的方法
Jun 30 Python
详解Python的Django框架中的模版继承
Jul 16 Python
Python实现字典依据value排序
Feb 24 Python
解决在Python编辑器pycharm中程序run正常debug错误的问题
Jan 17 Python
我喜欢你 抖音表白程序python版
Apr 07 Python
opencv3/Python 稠密光流calcOpticalFlowFarneback详解
Dec 11 Python
Jupyter notebook运行Spark+Scala教程
Apr 10 Python
简单了解pytest测试框架setup和tearDown
Apr 14 Python
解决Alexnet训练模型在每个epoch中准确率和loss都会一升一降问题
Jun 17 Python
Python实现AES加密,解密的两种方法
Oct 03 Python
python实现密度聚类(模板代码+sklearn代码)
Apr 27 #Python
Django中文件上传和文件访问微项目的方法
Apr 27 #Python
详解Python中namedtuple的使用
Apr 27 #Python
Python PyQt5运行程序把输出信息展示到GUI图形界面上
Apr 27 #Python
使用python实现微信小程序自动签到功能
Apr 27 #Python
Python日志:自定义输出字段 json格式输出方式
Apr 27 #Python
如何使用PyCharm将代码上传到GitHub上(图文详解)
Apr 27 #Python
You might like
php采用curl访问域名返回405 method not allowed提示的解决方法
2014/06/26 PHP
PHP图像处理类库及演示分享
2015/05/17 PHP
制作个性化的WordPress登陆界面的实例教程
2016/05/21 PHP
php 生成Tab键或逗号分隔的CSV
2016/09/24 PHP
利用laravel搭建一个迷你博客实战教程
2017/08/13 PHP
gearman中任务的优先级和返回状态实例分析
2020/02/27 PHP
Prototype String对象 学习
2009/07/19 Javascript
js函数获取html中className所在的内容并去除标签
2013/09/08 Javascript
Jquery实现自定义tooltip示例代码
2014/02/12 Javascript
jQuery 过滤方法filter()选择具有特殊属性的元素
2014/06/15 Javascript
jQuery实现返回顶部功能适合不支持js的浏览器
2014/08/19 Javascript
基于JavaScript实现移除(删除)数组中指定元素
2016/01/04 Javascript
Javascript的表单验证长度
2016/03/16 Javascript
JavaScript lodash常见用法系列小结
2016/08/24 Javascript
浅谈JS验证表单文本域输入空格的问题
2017/02/14 Javascript
Canvas 绘制粒子动画背景
2017/02/15 Javascript
Vue监听一个数组id是否与另一个数组id相同的方法
2018/09/26 Javascript
element form 校验数组每一项实例代码
2019/10/10 Javascript
vue 查看dist文件里的结构(多种方式)
2020/01/17 Javascript
JavaScript语句错误throw、try及catch实例解析
2020/08/18 Javascript
vue实现打地鼠小游戏
2020/08/21 Javascript
用JavaScript实现贪吃蛇游戏
2020/10/23 Javascript
angular8.5集成TinyMce5的使用和详细配置(推荐)
2020/11/16 Javascript
JavaScript实现京东快递单号查询
2020/11/30 Javascript
python实现requests发送/上传多个文件的示例
2018/06/04 Python
PyQt4编程之让状态栏显示信息的方法
2019/06/18 Python
Python中*args和**kwargs的区别详解
2019/09/17 Python
利用python3 的pygame模块实现塔防游戏
2019/12/30 Python
Python 求向量的余弦值操作
2021/03/04 Python
某/etc/fstab文件中的某行如下: /dev/had5 /mnt/dosdata msdos defaults,usrquota 1 2 请解释其含义
2013/04/11 面试题
迟到检讨书大全
2014/01/25 职场文书
八一建军节感言
2014/02/28 职场文书
会计与出纳自荐书范文
2014/03/16 职场文书
优秀的2014年两会精神解读
2014/03/17 职场文书
社区党的群众路线教育实践活动领导班子对照检查材料
2014/09/25 职场文书
使用golang编写一个并发工作队列
2021/05/08 Golang