python库skimage给灰度图像染色的方法示例


Posted in Python onApril 27, 2020

灰度图像染成红色和黄色

# 1.将灰度图像转换为RGB图像
image = color.gray2rgb(grayscale_image)
# 2.保留红色分量和黄色分量
red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]
# 3.显示图像
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

python库skimage给灰度图像染色的方法示例

HSV图像,H从0到1表示的颜色

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

python库skimage给灰度图像染色的方法示例

将灰度图像染成不同的颜色

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

python库skimage给灰度图像染色的方法示例

完整代码

"""
=========================
Tinting gray-scale images
=========================

It can be useful to artificially tint an image with some color, either to
highlight particular regions of an image or maybe just to liven up a grayscale
image. This example demonstrates image-tinting by scaling RGB values and by
adjusting colors in the HSV color-space.

In 2D, color images are often represented in RGB---3 layers of 2D arrays, where
the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The
simplest way of getting a tinted image is to set each RGB channel to the
grayscale image scaled by a different multiplier for each channel. For example,
multiplying the green and blue channels by 0 leaves only the red channel and
produces a bright red image. Similarly, zeroing-out the blue channel leaves
only the red and green channels, which combine to form yellow.
"""

import matplotlib.pyplot as plt
from skimage import data
from skimage import color
from skimage import img_as_float

grayscale_image = img_as_float(data.camera()[::2, ::2])
image = color.gray2rgb(grayscale_image)

red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

######################################################################
# In many cases, dealing with RGB values may not be ideal. Because of that,
# there are many other `color spaces`_ in which you can represent a color
# image. One popular color space is called HSV, which represents hue (~the
# color), saturation (~colorfulness), and value (~brightness). For example, a
# color (hue) might be green, but its saturation is how intense that green is
# ---where olive is on the low end and neon on the high end.
#
# In some implementations, the hue in HSV goes from 0 to 360, since hues wrap
# around in a circle. In scikit-image, however, hues are float values from 0
# to 1, so that hue, saturation, and value all share the same scale.
#
# .. _color spaces:
#   https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
#
# Below, we plot a linear gradient in the hue, with the saturation and value
# turned all the way up:
import numpy as np

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

######################################################################
# Notice how the colors at the far left and far right are the same. That
# reflects the fact that the hues wrap around like the color wheel (see HSV_
# for more info).
#
# .. _HSV: https://en.wikipedia.org/wiki/HSL_and_HSV
#
# Now, let's create a little utility function to take an RGB image and:
#
# 1. Transform the RGB image to HSV 2. Set the hue and saturation 3.
# Transform the HSV image back to RGB


def colorize(image, hue, saturation=1):
  """ Add color of the given hue to an RGB image.

  By default, set the saturation to 1 so that the colors pop!
  """
  hsv = color.rgb2hsv(image)
  hsv[:, :, 1] = saturation
  hsv[:, :, 0] = hue
  return color.hsv2rgb(hsv)


######################################################################
# Notice that we need to bump up the saturation; images with zero saturation
# are grayscale, so we need to a non-zero value to actually see the color
# we've set.
#
# Using the function above, we plot six images with a linear gradient in the
# hue and a non-zero saturation:

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

######################################################################
# You can combine this tinting effect with numpy slicing and fancy-indexing
# to selectively tint your images. In the example below, we set the hue of
# some rectangles using slicing and scale the RGB values of some pixels found
# by thresholding. In practice, you might want to define a region for tinting
# based on segmentation results or blob detection methods.

from skimage.filters import rank

# Square regions defined as slices over the first two dimensions.
top_left = (slice(100),) * 2
bottom_right = (slice(-100, None),) * 2

sliced_image = image.copy()
sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5)
sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5)

# Create a mask selecting regions with interesting texture.
noisy = rank.entropy(grayscale_image, np.ones((9, 9)))
textured_regions = noisy > 4
# Note that using `colorize` here is a bit more difficult, since `rgb2hsv`
# expects an RGB image (height x width x channel), but fancy-indexing returns
# a set of RGB pixels (# pixels x channel).
masked_image = image.copy()
masked_image[textured_regions, :] *= red_multiplier

fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(sliced_image)
ax2.imshow(masked_image)

plt.show()

######################################################################
# For coloring multiple regions, you may also be interested in
# `skimage.color.label2rgb http://scikit-
# image.org/docs/0.9.x/api/skimage.color.html#label2rgb`_.

python库skimage给灰度图像染色的方法示例

到此这篇关于python库skimage给灰度图像染色的方法示例的文章就介绍到这了,更多相关python 灰度图像染色内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现决策树、随机森林的简单原理
Mar 26 Python
Python实现的NN神经网络算法完整示例
Jun 19 Python
Python3对称加密算法AES、DES3实例详解
Dec 06 Python
浅谈Python编程中3个常用的数据结构和算法
Apr 30 Python
对Python 简单串口收发GUI界面的实例详解
Jun 12 Python
python变量命名的7条建议
Jul 04 Python
Python实现基于socket的udp传输与接收功能详解
Nov 15 Python
Python3 虚拟开发环境搭建过程(图文详解)
Jan 06 Python
python numpy 矩阵堆叠实例
Jan 17 Python
Python pandas如何向excel添加数据
May 22 Python
Python变量格式化输出实现原理解析
Aug 06 Python
利用Python的folium包绘制城市道路图的实现示例
Aug 24 Python
python实现密度聚类(模板代码+sklearn代码)
Apr 27 #Python
Django中文件上传和文件访问微项目的方法
Apr 27 #Python
详解Python中namedtuple的使用
Apr 27 #Python
Python PyQt5运行程序把输出信息展示到GUI图形界面上
Apr 27 #Python
使用python实现微信小程序自动签到功能
Apr 27 #Python
Python日志:自定义输出字段 json格式输出方式
Apr 27 #Python
如何使用PyCharm将代码上传到GitHub上(图文详解)
Apr 27 #Python
You might like
PHP调用三种数据库的方法(3)
2006/10/09 PHP
实用函数9
2007/11/08 PHP
网页上facebook分享功能具体实现
2014/01/26 PHP
PHP中实现crontab代码分享
2015/03/26 PHP
php实现在服务器端调整图片大小的方法
2015/06/16 PHP
简单谈谈php延迟静态绑定
2016/01/26 PHP
laravel 操作数据库常用函数的返回值方法
2019/10/11 PHP
Centos7安装swoole扩展操作示例
2020/03/26 PHP
js简单实现HTML标签Select联动带跳转
2013/10/23 Javascript
轻松学习jQuery插件EasyUI EasyUI创建菜单与按钮
2015/11/30 Javascript
js中数组结合字符串实现查找(屏蔽广告判断url等)
2016/03/30 Javascript
jQuery中on绑定事件后引发的事件冒泡问题如何解决
2016/05/25 Javascript
Vue2.0基于vue-cli+webpack父子组件通信(实例讲解)
2017/09/14 Javascript
利用jQuery+localStorage实现一个简易的计时器示例代码
2017/12/25 jQuery
详解Vue单元测试Karma+Mocha学习笔记
2018/01/31 Javascript
浅谈vuepress 踩坑记
2018/04/18 Javascript
Flexible.js可伸缩布局实现方法详解
2020/11/13 Javascript
Python使用PDFMiner解析PDF代码实例
2017/03/27 Python
python使用Tkinter实现在线音乐播放器
2018/01/30 Python
pygame实现烟雨蒙蒙下彩虹雨
2019/11/11 Python
分解成质因数(如435234=251*17*17*3*2,据说是华为笔试题)
2014/07/16 面试题
精彩的推荐信范文
2013/11/26 职场文书
2014年公司迎新年活动方案
2014/02/24 职场文书
报纸媒体创意广告词
2014/03/17 职场文书
《天安门广场》教学反思
2014/04/23 职场文书
大学理论知识学习自我鉴定
2014/04/28 职场文书
计算机专业自荐信范文
2014/05/28 职场文书
机关保密承诺书
2014/06/03 职场文书
五月的鲜花活动方案
2014/08/21 职场文书
组工干部演讲稿
2014/09/02 职场文书
基层党员群众路线整改措施及努力方向
2014/10/28 职场文书
群众路线教育实践活动方案
2014/10/31 职场文书
2015年前台接待工作总结
2015/05/04 职场文书
2016年小学中秋节活动总结
2016/04/05 职场文书
Java 多线程协作作业之信号同步
2022/05/11 Java/Android
服务器间如何实现文件共享
2022/05/20 Servers