python设置 matplotlib 正确显示中文的四种方式


Posted in Python onMay 10, 2021

一、前言

啪地一下点进来,很快呀~~

python设置 matplotlib 正确显示中文的四种方式

matplotlib是 Python 优秀的数据可视化第三方库,matplotlib是基于 numpy 的一套 Python 工具包。这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

python设置 matplotlib 正确显示中文的四种方式

Matplotlib库由各种可视化类构成,内部结构复杂,受 Matlab 启发 matplotlib.pyplot 是绘制各类可视化图形的命令子库,相当于快捷方式。

import matplotlib.pyplot as plt

可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

python设置 matplotlib 正确显示中文的四种方式

需要我们手动一下下设置~~,才能解决中文显示的问题。

二、解决方法

1. 方式一

from matplotlib.font_manager import FontProperties  # 导入FontProperties

font = FontProperties(fname="SimHei.ttf", size=14)  # 设置字体

# 哪里需要显示中文就在哪里设置
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties  # 步骤一
# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')
font = FontProperties(fname="SimHei.ttf", size=14)  # 步骤二
# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontproperties=font)
plt.ylabel("直接信任度值", fontsize=13, fontproperties=font)
# 显示图例
plt.legend(prop=font)

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

2. 方式二

通过 fontdict 字典参数来设置

fontdict={"family": "KaiTi", "size": 15, "color": "r"}
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "r"})
plt.ylabel("直接信任度值", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "k"})

# 显示图例
plt.legend(prop={'family': 'SimHei', 'size': 16})

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

3. 方式三

改变全局的字体

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
import matplotlib as mpl

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)
# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

4. 方式四

同样也是全局改变字体的方法

font = {'family' : 'SimHei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False)  # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

font = {'family' : 'SimHei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False)  # 步骤二(解决坐标轴负数的负号显示问题)

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

三、总结

  • 方式一、方式二是哪里需要中文显示才设置,且不会污染全局字体设置,更灵活。
  • 方式三、方式四不改变全局的字体设置,一次设置,多次使用,更方便。

附常用字体如下:

  • 宋体:SimSun
  • 黑体:SimHei
  • 微软雅黑:Microsoft YaHei
  • 微软正黑体:Microsoft JhengHei
  • 新宋体:NSimSun
  • 新细明体:PMingLiU
  • 细明体:MingLiU
  • 标楷体:DFKai-SB
  • 仿宋:FangSong
  • 楷体:KaiTi
  • 隶书:LiSu
  • 幼圆:YouYuan
  • 华文细黑:STXihei
  • 华文楷体:STKaiti
  • 华文宋体:STSong
  • 华文中宋:STZhongsong
  • 华文仿宋:STFangsong
  • 方正舒体:FZShuTi
  • 方正姚体:FZYaoti
  • 华文彩云:STCaiyun
  • 华文琥珀:STHupo
  • 华文隶书:STLiti
  • 华文行楷:STXingkai
  • 华文新魏:STXinwei

以上就是python设置 matplotlib 正确显示中文的四种方式的详细内容,更多关于python matplotlib 正确显示中文的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
pygame学习笔记(6):完成一个简单的游戏
Apr 15 Python
Python中encode()方法的使用简介
May 18 Python
python3.5仿微软计算器程序
Mar 30 Python
详解python里使用正则表达式的全匹配功能
Oct 19 Python
pycharm远程调试openstack的图文教程
Nov 21 Python
对python3 一组数值的归一化处理方法详解
Jul 11 Python
Python Socket编程之多线程聊天室
Jul 28 Python
python 定时器,轮询定时器的实例
Feb 20 Python
matplotlib 曲线图 和 折线图 plt.plot()实例
Apr 17 Python
用python 绘制茎叶图和复合饼图
Feb 26 Python
python 调用js的四种方式
Apr 11 Python
Python获取江苏疫情实时数据及爬虫分析
Aug 02 Python
提取视频中的音频 Python只需要三行代码!
Python-typing: 类型标注与支持 Any类型详解
May 10 #Python
超详细Python解释器新手安装教程
Python机器学习三大件之一numpy
python实现自动清理文件夹旧文件
May 10 #Python
Python中的min及返回最小值索引的操作
May 10 #Python
发工资啦!教你用Python实现邮箱自动群发工资条
You might like
PHP 各种排序算法实现代码
2009/08/20 PHP
浅谈php安全性需要注意的几点事项
2014/07/17 PHP
php实现的简单日志写入函数
2015/03/31 PHP
php命令行(cli)下执行PHP脚本文件的相对路径的问题解决方法
2015/05/25 PHP
Yii框架弹出框功能示例
2017/01/07 PHP
php爬取天猫和淘宝商品数据
2018/02/23 PHP
PHP的mysqli_thread_id()函数讲解
2019/01/24 PHP
Yii框架布局文件的动态切换操作示例
2019/11/11 PHP
Avengerls vs KG BO3 第二场2.18
2021/03/10 DOTA
Javascript(AJAX)解析XML的代码(兼容FIREFOX/IE)
2010/07/11 Javascript
兼容IE、firefox以及chrome的js获取时间(getFullYear)
2014/07/04 Javascript
js中回调函数的学习笔记
2014/07/31 Javascript
js使用递归解析xml
2014/12/12 Javascript
Nodejs Express4.x开发框架随手笔记
2015/11/23 NodeJs
干货分享:让你分分钟学会javascript闭包
2015/12/25 Javascript
JavaScript中的prototype原型学习指南
2016/05/09 Javascript
浅谈JS中逗号运算符的用法
2016/06/12 Javascript
移动端滑动插件Swipe教程
2016/10/16 Javascript
Jquery把获取到的input值转换成json
2017/05/15 jQuery
JavaScript实现二维坐标点排序效果
2017/07/18 Javascript
vue 做移动端微信公众号采坑经验记录
2018/04/26 Javascript
Angularjs实现数组随机排序的方法
2018/10/02 Javascript
node版本管理工具n包使用教程详解
2018/11/09 Javascript
Python基于更相减损术实现求解最大公约数的方法
2018/04/04 Python
django富文本编辑器的实现示例
2019/04/10 Python
Python2.x与3​​.x版本有哪些区别
2020/07/09 Python
购买瑞典当代设计的腕表和太阳眼镜:TRIWA
2016/10/30 全球购物
用C或者C++语言实现SOCKET通信
2015/02/24 面试题
楼面经理岗位职责范本
2014/02/18 职场文书
2014全国两会心得体会
2014/03/17 职场文书
《黄山奇石》教学反思
2014/04/19 职场文书
实习单位推荐信
2015/03/27 职场文书
2015年个人工作总结报告
2015/04/25 职场文书
2016计划生育先进个人事迹材料
2016/02/29 职场文书
opencv 分类白天与夜景视频的方法
2021/06/05 Python
Python可视化神器pyecharts绘制水球图
2022/07/07 Python