python实现二分类和多分类的ROC曲线教程


Posted in Python onJune 15, 2020

基本概念

precision:预测为对的当中,原本为对的比例(越大越好,1为理想状态)

recall:原本为对的当中,预测为对的比例(越大越好,1为理想状态)

F-measure:F度量是对准确率和召回率做一个权衡(越大越好,1为理想状态,此时precision为1,recall为1)

accuracy:预测对的(包括原本是对预测为对,原本是错的预测为错两种情形)占整个的比例(越大越好,1为理想状态)

fp rate:原本是错的预测为对的比例(越小越好,0为理想状态)

tp rate:原本是对的预测为对的比例(越大越好,1为理想状态)

ROC曲线通常在Y轴上具有真阳性率,在X轴上具有假阳性率。这意味着图的左上角是“理想”点 - 误报率为零,真正的正率为1。这不太现实,但它确实意味着曲线下面积(AUC)通常更好。

二分类问题:ROC曲线

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
start_time = time.time()
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,accuracy_score
from sklearn.metrics import precision_score,f1_score
from keras.optimizers import Adam,SGD,sgd
from keras.models import load_model

print('读取数据')
X_train = np.load('x_train-rotate_2.npy')
Y_train = np.load('y_train-rotate_2.npy')
print(X_train.shape)
print(Y_train.shape)

print('获取测试数据和验证数据')
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666)

Y_train = np.asarray(Y_train,np.uint8)
Y_valid = np.asarray(Y_valid,np.uint8)
X_valid = np.array(X_valid, np.float32) / 255.

print('获取模型')
model = load_model('./model/InceptionV3_model.h5')
opt = Adam(lr=1e-4)
model.compile(optimizer=opt, loss='binary_crossentropy')

print("Predicting")
Y_pred = model.predict(X_valid)
Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引
Y_valid = [np.argmax(y) for y in Y_valid]

# micro:多分类
# weighted:不均衡数量的类来说,计算二分类metrics的平均
# macro:计算二分类metrics的均值,为每个类给出相同权重的分值。
precision = precision_score(Y_valid, Y_pred, average='weighted')
recall = recall_score(Y_valid, Y_pred, average='weighted')
f1_score = f1_score(Y_valid, Y_pred, average='weighted')
accuracy_score = accuracy_score(Y_valid, Y_pred)
print("Precision_score:",precision)
print("Recall_score:",recall)
print("F1_score:",f1_score)
print("Accuracy_score:",accuracy_score)

# 二分类 ROC曲线
# roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
# 横坐标:假正率(False Positive Rate , FPR)
fpr, tpr, thresholds_keras = roc_curve(Y_valid, Y_pred)
auc = auc(fpr, tpr)
print("AUC : ", auc)
plt.figure()
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Keras (area = {:.3f})'.format(auc))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.savefig("../images/ROC/ROC_2分类.png")
plt.show()

print("--- %s seconds ---" % (time.time() - start_time))

ROC图如下所示:

python实现二分类和多分类的ROC曲线教程

多分类问题:ROC曲线

ROC曲线通常用于二分类以研究分类器的输出。为了将ROC曲线和ROC区域扩展到多类或多标签分类,有必要对输出进行二值化。⑴可以每个标签绘制一条ROC曲线。⑵也可以通过将标签指示符矩阵的每个元素视为二元预测(微平均)来绘制ROC曲线。⑶另一种用于多类别分类的评估方法是宏观平均,它对每个标签的分类给予相同的权重。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
start_time = time.time()
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,accuracy_score
from sklearn.metrics import precision_score,f1_score
from keras.optimizers import Adam,SGD,sgd
from keras.models import load_model
from itertools import cycle
from scipy import interp
from sklearn.preprocessing import label_binarize

nb_classes = 5
print('读取数据')
X_train = np.load('x_train-resized_5.npy')
Y_train = np.load('y_train-resized_5.npy')
print(X_train.shape)
print(Y_train.shape)

print('获取测试数据和验证数据')
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666)

Y_train = np.asarray(Y_train,np.uint8)
Y_valid = np.asarray(Y_valid,np.uint8)
X_valid = np.asarray(X_valid, np.float32) / 255.

print('获取模型')
model = load_model('./model/SE-InceptionV3_model.h5')
opt = Adam(lr=1e-4)
model.compile(optimizer=opt, loss='categorical_crossentropy')

print("Predicting")
Y_pred = model.predict(X_valid)
Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引
Y_valid = [np.argmax(y) for y in Y_valid]

# Binarize the output
Y_valid = label_binarize(Y_valid, classes=[i for i in range(nb_classes)])
Y_pred = label_binarize(Y_pred, classes=[i for i in range(nb_classes)])

# micro:多分类
# weighted:不均衡数量的类来说,计算二分类metrics的平均
# macro:计算二分类metrics的均值,为每个类给出相同权重的分值。
precision = precision_score(Y_valid, Y_pred, average='micro')
recall = recall_score(Y_valid, Y_pred, average='micro')
f1_score = f1_score(Y_valid, Y_pred, average='micro')
accuracy_score = accuracy_score(Y_valid, Y_pred)
print("Precision_score:",precision)
print("Recall_score:",recall)
print("F1_score:",f1_score)
print("Accuracy_score:",accuracy_score)

# roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
# 横坐标:假正率(False Positive Rate , FPR)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(nb_classes):
 fpr[i], tpr[i], _ = roc_curve(Y_valid[:, i], Y_pred[:, i])
 roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(Y_valid.ravel(), Y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(nb_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(nb_classes):
 mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= nb_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
  label='micro-average ROC curve (area = {0:0.2f})'
  ''.format(roc_auc["micro"]),
  color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
  label='macro-average ROC curve (area = {0:0.2f})'
  ''.format(roc_auc["macro"]),
  color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(nb_classes), colors):
 plt.plot(fpr[i], tpr[i], color=color, lw=lw,
  label='ROC curve of class {0} (area = {1:0.2f})'
  ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.savefig("../images/ROC/ROC_5分类.png")
plt.show()

print("--- %s seconds ---" % (time.time() - start_time))

ROC图如下所示:

python实现二分类和多分类的ROC曲线教程

以上这篇python实现二分类和多分类的ROC曲线教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
浅谈Python黑帽子取代netcat
Feb 10 Python
Django后台获取前端post上传的文件方法
May 28 Python
神经网络相关之基础概念的讲解
Dec 29 Python
python 通过麦克风录音 生成wav文件的方法
Jan 09 Python
Python3日期与时间戳转换的几种方法详解
Jun 04 Python
对PyQt5中树结构的实现方法详解
Jun 17 Python
python 怎样将dataframe中的字符串日期转化为日期的方法
Sep 26 Python
python 画函数曲线示例
Dec 04 Python
Python cookie的保存与读取、SSL讲解
Feb 17 Python
keras得到每层的系数方式
Jun 15 Python
python GUI计算器的实现
Oct 09 Python
Python软件包安装的三种常见方法
Jul 07 Python
python属于解释型语言么
Jun 15 #Python
python要安装在哪个盘
Jun 15 #Python
python中wheel的用法整理
Jun 15 #Python
keras绘制acc和loss曲线图实例
Jun 15 #Python
Python定义一个函数的方法
Jun 15 #Python
python是怎么被发明的
Jun 15 #Python
Keras 利用sklearn的ROC-AUC建立评价函数详解
Jun 15 #Python
You might like
php面向对象全攻略 (五) 封装性
2009/09/30 PHP
PHP 魔术函数使用说明
2010/05/14 PHP
php计算程序运行时间的简单例子分享
2014/05/10 PHP
PHP读取mssql json数据中文乱码的解决办法
2016/04/11 PHP
PHP中引用类型和值类型功能与用法示例
2019/02/26 PHP
Opacity.js
2007/01/22 Javascript
jquery 操作iframe的几种方法总结
2013/12/13 Javascript
文本框(input)获取焦点(onfocus)时样式改变的示例代码
2014/01/10 Javascript
JavaScript关闭当前页面(窗口)不带任何提示
2014/03/26 Javascript
jQuery 如何先创建、再修改、后添加DOM元素
2014/05/20 Javascript
原生js事件的添加和删除的封装
2014/07/01 Javascript
JavaScript中的null和undefined区别介绍
2015/01/01 Javascript
JS实现的最简Table选项卡效果
2015/10/14 Javascript
jquery中live()方法和bind()方法区别分析
2016/06/23 Javascript
基于ES6 Array.of的用法(实例讲解)
2017/09/05 Javascript
前端路由&webpack基础配置详解
2019/06/10 Javascript
Nuxt页面级缓存的实现
2020/03/09 Javascript
利用React高阶组件实现一个面包屑导航的示例
2020/08/23 Javascript
小程序中手机号识别的示例
2020/12/14 Javascript
[01:01:18]DOTA2上海特级锦标赛主赛事日 - 2 败者组第二轮#2COL VS LGD
2016/03/03 DOTA
浅谈Python traceback的优雅处理
2018/08/31 Python
在Python中使用Neo4j的方法
2019/03/14 Python
Django数据库迁移常见使用方法
2020/11/12 Python
Ubuntu权限不足无法创建文件夹解决方案
2020/11/14 Python
一款纯css3实现简单的checkbox复选框和radio单选框
2014/11/05 HTML / CSS
马来西亚最好的婴儿商店:Motherhood
2017/09/14 全球购物
瑞典手机壳品牌:Richmond & Finch
2018/04/28 全球购物
EntityManager都有哪些方法
2013/11/01 面试题
本科毕业生专业自荐书范文
2014/02/05 职场文书
大学新生军训方案
2014/05/03 职场文书
庆祝教师节演讲稿
2014/09/03 职场文书
单位考核鉴定意见
2015/06/05 职场文书
2019事业单位个人工作总结范文
2019/08/26 职场文书
pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作
2021/05/22 Python
Spring Data JPA的Audit功能审计数据库的变更
2021/06/26 Java/Android
Python3的进程和线程你了解吗
2022/03/16 Python