python实现二分类和多分类的ROC曲线教程


Posted in Python onJune 15, 2020

基本概念

precision:预测为对的当中,原本为对的比例(越大越好,1为理想状态)

recall:原本为对的当中,预测为对的比例(越大越好,1为理想状态)

F-measure:F度量是对准确率和召回率做一个权衡(越大越好,1为理想状态,此时precision为1,recall为1)

accuracy:预测对的(包括原本是对预测为对,原本是错的预测为错两种情形)占整个的比例(越大越好,1为理想状态)

fp rate:原本是错的预测为对的比例(越小越好,0为理想状态)

tp rate:原本是对的预测为对的比例(越大越好,1为理想状态)

ROC曲线通常在Y轴上具有真阳性率,在X轴上具有假阳性率。这意味着图的左上角是“理想”点 - 误报率为零,真正的正率为1。这不太现实,但它确实意味着曲线下面积(AUC)通常更好。

二分类问题:ROC曲线

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
start_time = time.time()
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,accuracy_score
from sklearn.metrics import precision_score,f1_score
from keras.optimizers import Adam,SGD,sgd
from keras.models import load_model

print('读取数据')
X_train = np.load('x_train-rotate_2.npy')
Y_train = np.load('y_train-rotate_2.npy')
print(X_train.shape)
print(Y_train.shape)

print('获取测试数据和验证数据')
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666)

Y_train = np.asarray(Y_train,np.uint8)
Y_valid = np.asarray(Y_valid,np.uint8)
X_valid = np.array(X_valid, np.float32) / 255.

print('获取模型')
model = load_model('./model/InceptionV3_model.h5')
opt = Adam(lr=1e-4)
model.compile(optimizer=opt, loss='binary_crossentropy')

print("Predicting")
Y_pred = model.predict(X_valid)
Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引
Y_valid = [np.argmax(y) for y in Y_valid]

# micro:多分类
# weighted:不均衡数量的类来说,计算二分类metrics的平均
# macro:计算二分类metrics的均值,为每个类给出相同权重的分值。
precision = precision_score(Y_valid, Y_pred, average='weighted')
recall = recall_score(Y_valid, Y_pred, average='weighted')
f1_score = f1_score(Y_valid, Y_pred, average='weighted')
accuracy_score = accuracy_score(Y_valid, Y_pred)
print("Precision_score:",precision)
print("Recall_score:",recall)
print("F1_score:",f1_score)
print("Accuracy_score:",accuracy_score)

# 二分类 ROC曲线
# roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
# 横坐标:假正率(False Positive Rate , FPR)
fpr, tpr, thresholds_keras = roc_curve(Y_valid, Y_pred)
auc = auc(fpr, tpr)
print("AUC : ", auc)
plt.figure()
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Keras (area = {:.3f})'.format(auc))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.savefig("../images/ROC/ROC_2分类.png")
plt.show()

print("--- %s seconds ---" % (time.time() - start_time))

ROC图如下所示:

python实现二分类和多分类的ROC曲线教程

多分类问题:ROC曲线

ROC曲线通常用于二分类以研究分类器的输出。为了将ROC曲线和ROC区域扩展到多类或多标签分类,有必要对输出进行二值化。⑴可以每个标签绘制一条ROC曲线。⑵也可以通过将标签指示符矩阵的每个元素视为二元预测(微平均)来绘制ROC曲线。⑶另一种用于多类别分类的评估方法是宏观平均,它对每个标签的分类给予相同的权重。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
start_time = time.time()
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,accuracy_score
from sklearn.metrics import precision_score,f1_score
from keras.optimizers import Adam,SGD,sgd
from keras.models import load_model
from itertools import cycle
from scipy import interp
from sklearn.preprocessing import label_binarize

nb_classes = 5
print('读取数据')
X_train = np.load('x_train-resized_5.npy')
Y_train = np.load('y_train-resized_5.npy')
print(X_train.shape)
print(Y_train.shape)

print('获取测试数据和验证数据')
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666)

Y_train = np.asarray(Y_train,np.uint8)
Y_valid = np.asarray(Y_valid,np.uint8)
X_valid = np.asarray(X_valid, np.float32) / 255.

print('获取模型')
model = load_model('./model/SE-InceptionV3_model.h5')
opt = Adam(lr=1e-4)
model.compile(optimizer=opt, loss='categorical_crossentropy')

print("Predicting")
Y_pred = model.predict(X_valid)
Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引
Y_valid = [np.argmax(y) for y in Y_valid]

# Binarize the output
Y_valid = label_binarize(Y_valid, classes=[i for i in range(nb_classes)])
Y_pred = label_binarize(Y_pred, classes=[i for i in range(nb_classes)])

# micro:多分类
# weighted:不均衡数量的类来说,计算二分类metrics的平均
# macro:计算二分类metrics的均值,为每个类给出相同权重的分值。
precision = precision_score(Y_valid, Y_pred, average='micro')
recall = recall_score(Y_valid, Y_pred, average='micro')
f1_score = f1_score(Y_valid, Y_pred, average='micro')
accuracy_score = accuracy_score(Y_valid, Y_pred)
print("Precision_score:",precision)
print("Recall_score:",recall)
print("F1_score:",f1_score)
print("Accuracy_score:",accuracy_score)

# roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
# 横坐标:假正率(False Positive Rate , FPR)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(nb_classes):
 fpr[i], tpr[i], _ = roc_curve(Y_valid[:, i], Y_pred[:, i])
 roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(Y_valid.ravel(), Y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(nb_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(nb_classes):
 mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= nb_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
  label='micro-average ROC curve (area = {0:0.2f})'
  ''.format(roc_auc["micro"]),
  color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
  label='macro-average ROC curve (area = {0:0.2f})'
  ''.format(roc_auc["macro"]),
  color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(nb_classes), colors):
 plt.plot(fpr[i], tpr[i], color=color, lw=lw,
  label='ROC curve of class {0} (area = {1:0.2f})'
  ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.savefig("../images/ROC/ROC_5分类.png")
plt.show()

print("--- %s seconds ---" % (time.time() - start_time))

ROC图如下所示:

python实现二分类和多分类的ROC曲线教程

以上这篇python实现二分类和多分类的ROC曲线教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python装饰器使用方法实例
Nov 21 Python
python获取文件后缀名及批量更新目录下文件后缀名的方法
Nov 11 Python
Python3实现抓取javascript动态生成的html网页功能示例
Aug 22 Python
Python基于回溯法子集树模板解决0-1背包问题实例
Sep 02 Python
Python cookbook(数据结构与算法)将序列分解为单独变量的方法
Feb 13 Python
python正则表达式爬取猫眼电影top100
Feb 24 Python
tensorflow实现softma识别MNIST
Mar 12 Python
python定时关机小脚本
Jun 20 Python
django-crontab实现服务端的定时任务的示例代码
Feb 17 Python
python程序文件扩展名知识点详解
Feb 27 Python
Django mysqlclient安装和使用详解
Sep 17 Python
Python中过滤字符串列表的方法
Dec 22 Python
python属于解释型语言么
Jun 15 #Python
python要安装在哪个盘
Jun 15 #Python
python中wheel的用法整理
Jun 15 #Python
keras绘制acc和loss曲线图实例
Jun 15 #Python
Python定义一个函数的方法
Jun 15 #Python
python是怎么被发明的
Jun 15 #Python
Keras 利用sklearn的ROC-AUC建立评价函数详解
Jun 15 #Python
You might like
使用JSON实现数据的跨域传输的php代码
2011/12/20 PHP
json的键名为数字时的调用方式(示例代码)
2013/11/15 PHP
php实现的css文件背景图片下载器代码
2014/11/11 PHP
php实现的简单美国商品税计算函数
2015/07/13 PHP
JavaScript For Beginners(转载)
2007/01/05 Javascript
初探jquery——表单应用范例
2007/02/20 Javascript
用JS判断IE版本的代码 超管用!
2011/08/09 Javascript
namespace.js Javascript的命名空间库
2011/10/11 Javascript
一个基于jQuery的树型插件(OrangeTree)使用介绍
2012/05/03 Javascript
Javascript图像处理—亮度对比度应用案例
2013/01/03 Javascript
Angular.js之作用域scope'@','=','&'实例详解
2017/02/28 Javascript
HTML5+jQuery实现搜索智能匹配功能
2017/03/24 jQuery
js指定步长实现单方向匀速运动
2017/07/17 Javascript
用Axios Element实现全局的请求loading的方法
2018/03/15 Javascript
angular6的响应式表单的实现
2018/10/10 Javascript
微信小程序ibeacon三点定位详解
2018/10/31 Javascript
详解如何解决vue开发请求数据跨域的问题(基于浏览器的配置解决)
2018/11/12 Javascript
基于Layui自定义模块的使用方法详解
2019/09/14 Javascript
Python性能提升之延迟初始化
2016/12/04 Python
python3+PyQt5重新实现QT事件处理程序
2018/04/19 Python
python自动截取需要区域,进行图像识别的方法
2018/05/17 Python
Python中的引用和拷贝实例解析
2019/11/14 Python
HTML5移动端开发遇见的东西
2019/10/11 HTML / CSS
丝芙兰法国官网:SEPHORA法国
2016/09/01 全球购物
美国转售二手商品的电子商务平台:BLINQ
2018/12/13 全球购物
Carmen Sol官网:购买果冻鞋、手袋和配件
2021/01/01 全球购物
一些Unix笔试题和面试题
2013/01/22 面试题
物业管理员岗位职责范文
2013/11/25 职场文书
初中生操行评语大全
2014/04/24 职场文书
县委常委班子对照检查材料思想汇报
2014/09/28 职场文书
党委书记个人检查对照材料思想汇报
2014/10/11 职场文书
大学毕业生自我鉴定范文
2019/06/21 职场文书
开网店计划分析
2019/07/30 职场文书
导游词之神仙居景区
2019/11/15 职场文书
Golang之sync.Pool使用详解
2021/05/06 Golang
MySQL GTID复制的具体使用
2022/05/20 MySQL