keras绘制acc和loss曲线图实例


Posted in Python onJune 15, 2020

我就废话不多说了,大家还是直接看代码吧!

#加载keras模块
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline

#写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
  self.losses = {'batch':[], 'epoch':[]}
  self.accuracy = {'batch':[], 'epoch':[]}
  self.val_loss = {'batch':[], 'epoch':[]}
  self.val_acc = {'batch':[], 'epoch':[]}

 def on_batch_end(self, batch, logs={}):
  self.losses['batch'].append(logs.get('loss'))
  self.accuracy['batch'].append(logs.get('acc'))
  self.val_loss['batch'].append(logs.get('val_loss'))
  self.val_acc['batch'].append(logs.get('val_acc'))

 def on_epoch_end(self, batch, logs={}):
  self.losses['epoch'].append(logs.get('loss'))
  self.accuracy['epoch'].append(logs.get('acc'))
  self.val_loss['epoch'].append(logs.get('val_loss'))
  self.val_acc['epoch'].append(logs.get('val_acc'))

 def loss_plot(self, loss_type):
  iters = range(len(self.losses[loss_type]))
  plt.figure()
  # acc
  plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
  # loss
  plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
  if loss_type == 'epoch':
   # val_acc
   plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
   # val_loss
   plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
  plt.grid(True)
  plt.xlabel(loss_type)
  plt.ylabel('acc-loss')
  plt.legend(loc="upper right")
  plt.show()
#变量初始化
batch_size = 128 
nb_classes = 10
nb_epoch = 20

# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#建立模型 使用Sequential()
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

#打印模型
model.summary()

#训练与评估
#编译模型
model.compile(loss='categorical_crossentropy',
    optimizer=RMSprop(),
    metrics=['accuracy'])
#创建一个实例history
history = LossHistory()

#迭代训练(注意这个地方要加入callbacks)
model.fit(X_train, Y_train,
   batch_size=batch_size, nb_epoch=nb_epoch,
   verbose=1, 
   validation_data=(X_test, Y_test),
   callbacks=[history])

#模型评估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#绘制acc-loss曲线
history.loss_plot('epoch')

keras绘制acc和loss曲线图实例

补充知识:keras中自定义验证集的性能评估(ROC,AUC)

在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了:

from sklearn.metrics import roc_auc_score
from keras import backend as K

# AUC for a binary classifier
def auc(y_true, y_pred):
 ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
 binSizes = -(pfas[1:]-pfas[:-1])
 s = ptas*binSizes
 return K.sum(s, axis=0)
#------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # N = total number of negative labels
 N = K.sum(1 - y_true)
 # FP = total number of false alerts, alerts from the negative class labels
 FP = K.sum(y_pred - y_pred * y_true)
 return FP/N
#-----------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # P = total number of positive labels
 P = K.sum(y_true)
 # TP = total number of correct alerts, alerts from the positive class labels
 TP = K.sum(y_pred * y_true)
 return TP/P
 
#接着在模型的compile中设置metrics
#如下例子,我用的是RNN做分类
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras
from keras.layers import GRU

model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于变长序列输入
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) 
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #写入自定义评价函数

接下来就自己作预测了...

方法二:

from sklearn.metrics import roc_auc_score
import keras
class RocAucMetricCallback(keras.callbacks.Callback):
 def __init__(self, predict_batch_size=1024, include_on_batch=False):
  super(RocAucMetricCallback, self).__init__()
  self.predict_batch_size=predict_batch_size
  self.include_on_batch=include_on_batch
 
 def on_batch_begin(self, batch, logs={}):
  pass
 
 def on_batch_end(self, batch, logs={}):
  if(self.include_on_batch):
   logs['roc_auc_val']=float('-inf')
   if(self.validation_data):
    logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
             self.model.predict(self.validation_data[0],
                  batch_size=self.predict_batch_size))
 def on_train_begin(self, logs={}):
  if not ('roc_auc_val' in self.params['metrics']):
   self.params['metrics'].append('roc_auc_val')
 
 def on_train_end(self, logs={}):
  pass
 
 def on_epoch_begin(self, epoch, logs={}):
  pass
 
 def on_epoch_end(self, epoch, logs={}):
  logs['roc_auc_val']=float('-inf')
  if(self.validation_data):
   logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
            self.model.predict(self.validation_data[0],
                 batch_size=self.predict_batch_size))
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import GRU
import keras
from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score
from keras import metrics
 
cb = [
 my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping!
 EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max')
]
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features)))
# model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
 
model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #这里就可以写其他评估标准
model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2,
   callbacks=cb,validation_split=0.2,
   shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)

亲测有效!

以上这篇keras绘制acc和loss曲线图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
编写Python脚本批量下载DesktopNexus壁纸的教程
May 06 Python
Python中input与raw_input 之间的比较
Aug 20 Python
mac下pycharm设置python版本的图文教程
Jun 13 Python
python自动化生成IOS的图标
Nov 13 Python
Python3对称加密算法AES、DES3实例详解
Dec 06 Python
Python实现带参数的用户验证功能装饰器示例
Dec 14 Python
在python中创建指定大小的多维数组方式
Nov 28 Python
使用PyTorch将文件夹下的图片分为训练集和验证集实例
Jan 08 Python
python实现贪吃蛇游戏源码
Mar 21 Python
解决pymysql cursor.fetchall() 获取不到数据的问题
May 15 Python
Python OpenCV读取中文路径图像的方法
Jul 02 Python
python学习之使用Matplotlib画实时的动态折线图的示例代码
Feb 25 Python
Python定义一个函数的方法
Jun 15 #Python
python是怎么被发明的
Jun 15 #Python
Keras 利用sklearn的ROC-AUC建立评价函数详解
Jun 15 #Python
Python如何在windows环境安装pip及rarfile
Jun 15 #Python
keras训练曲线,混淆矩阵,CNN层输出可视化实例
Jun 15 #Python
Python3 requests模块如何模仿浏览器及代理
Jun 15 #Python
keras读取训练好的模型参数并把参数赋值给其它模型详解
Jun 15 #Python
You might like
PHP动态图像的创建
2006/10/09 PHP
PHP中的extract的作用分析
2008/04/09 PHP
PHP数组实例详解
2016/06/26 PHP
Yii2中YiiBase自动加载类、引用文件方法分析(autoload)
2016/07/25 PHP
动态加载iframe
2006/06/16 Javascript
超级24小时弹窗代码 24小时退出弹窗代码 100%弹窗代码(IE only)
2010/06/11 Javascript
JQuery实现简单验证码提示解决方案
2012/12/20 Javascript
新增加的内容是如何将div的scrollbar自动移动最下面
2014/01/02 Javascript
教你如何终止JQUERY的$.AJAX请求
2016/02/23 Javascript
jQuery改变form表单的action,并进行提交的实现代码
2016/05/25 Javascript
使用递归遍历对象获得value值的实现方法
2016/06/14 Javascript
jquery表格datatables实例解析 直接加载和延迟加载
2016/08/12 Javascript
JavaScript动态检验密码强度的实现方法
2016/11/09 Javascript
jQuery中的一些小技巧
2017/01/18 Javascript
ionic 自定义弹框效果
2017/06/27 Javascript
vue-cli配置环境变量的方法
2018/07/09 Javascript
七行JSON代码把你的网站变成移动应用过程详解
2019/07/09 Javascript
JS+css3实现幻灯片轮播图
2020/08/14 Javascript
如何使用RoughViz可视化Vue.js中的草绘图表
2021/01/30 Vue.js
[01:10]DOTA2英雄背景故事第四期之混沌法则混沌骑士
2020/07/16 DOTA
python paramiko模块学习分享
2017/08/23 Python
Python的SimpleHTTPServer模块用处及使用方法简介
2018/01/22 Python
Django Celery异步任务队列的实现
2019/07/24 Python
使用pyecharts生成Echarts网页的实例
2019/08/12 Python
python爬取本站电子书信息并入库的实现代码
2020/01/20 Python
Python列表list操作相关知识小结
2020/01/29 Python
python基于socket函数实现端口扫描
2020/05/28 Python
Python经纬度坐标转换为距离及角度的实现
2020/11/01 Python
自1926年以来就为冰岛保持温暖:66°North
2020/11/27 全球购物
2019史上最全Database工程师题库
2015/12/06 面试题
大学生评语大全
2014/04/18 职场文书
社团活动总结报告
2014/06/27 职场文书
党员领导干部民主生活会批评与自我批评发言
2014/09/28 职场文书
资深HR教你写好简历中的自我评价
2019/05/07 职场文书
《勇者辞职不干了》ED主题曲无字幕动画MV公开
2022/04/13 日漫
Sql Server 行数据的某列值想作为字段列显示的方法
2022/04/20 SQL Server