keras绘制acc和loss曲线图实例


Posted in Python onJune 15, 2020

我就废话不多说了,大家还是直接看代码吧!

#加载keras模块
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline

#写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
  self.losses = {'batch':[], 'epoch':[]}
  self.accuracy = {'batch':[], 'epoch':[]}
  self.val_loss = {'batch':[], 'epoch':[]}
  self.val_acc = {'batch':[], 'epoch':[]}

 def on_batch_end(self, batch, logs={}):
  self.losses['batch'].append(logs.get('loss'))
  self.accuracy['batch'].append(logs.get('acc'))
  self.val_loss['batch'].append(logs.get('val_loss'))
  self.val_acc['batch'].append(logs.get('val_acc'))

 def on_epoch_end(self, batch, logs={}):
  self.losses['epoch'].append(logs.get('loss'))
  self.accuracy['epoch'].append(logs.get('acc'))
  self.val_loss['epoch'].append(logs.get('val_loss'))
  self.val_acc['epoch'].append(logs.get('val_acc'))

 def loss_plot(self, loss_type):
  iters = range(len(self.losses[loss_type]))
  plt.figure()
  # acc
  plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
  # loss
  plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
  if loss_type == 'epoch':
   # val_acc
   plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
   # val_loss
   plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
  plt.grid(True)
  plt.xlabel(loss_type)
  plt.ylabel('acc-loss')
  plt.legend(loc="upper right")
  plt.show()
#变量初始化
batch_size = 128 
nb_classes = 10
nb_epoch = 20

# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#建立模型 使用Sequential()
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

#打印模型
model.summary()

#训练与评估
#编译模型
model.compile(loss='categorical_crossentropy',
    optimizer=RMSprop(),
    metrics=['accuracy'])
#创建一个实例history
history = LossHistory()

#迭代训练(注意这个地方要加入callbacks)
model.fit(X_train, Y_train,
   batch_size=batch_size, nb_epoch=nb_epoch,
   verbose=1, 
   validation_data=(X_test, Y_test),
   callbacks=[history])

#模型评估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#绘制acc-loss曲线
history.loss_plot('epoch')

keras绘制acc和loss曲线图实例

补充知识:keras中自定义验证集的性能评估(ROC,AUC)

在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了:

from sklearn.metrics import roc_auc_score
from keras import backend as K

# AUC for a binary classifier
def auc(y_true, y_pred):
 ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
 binSizes = -(pfas[1:]-pfas[:-1])
 s = ptas*binSizes
 return K.sum(s, axis=0)
#------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # N = total number of negative labels
 N = K.sum(1 - y_true)
 # FP = total number of false alerts, alerts from the negative class labels
 FP = K.sum(y_pred - y_pred * y_true)
 return FP/N
#-----------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # P = total number of positive labels
 P = K.sum(y_true)
 # TP = total number of correct alerts, alerts from the positive class labels
 TP = K.sum(y_pred * y_true)
 return TP/P
 
#接着在模型的compile中设置metrics
#如下例子,我用的是RNN做分类
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras
from keras.layers import GRU

model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于变长序列输入
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) 
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #写入自定义评价函数

接下来就自己作预测了...

方法二:

from sklearn.metrics import roc_auc_score
import keras
class RocAucMetricCallback(keras.callbacks.Callback):
 def __init__(self, predict_batch_size=1024, include_on_batch=False):
  super(RocAucMetricCallback, self).__init__()
  self.predict_batch_size=predict_batch_size
  self.include_on_batch=include_on_batch
 
 def on_batch_begin(self, batch, logs={}):
  pass
 
 def on_batch_end(self, batch, logs={}):
  if(self.include_on_batch):
   logs['roc_auc_val']=float('-inf')
   if(self.validation_data):
    logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
             self.model.predict(self.validation_data[0],
                  batch_size=self.predict_batch_size))
 def on_train_begin(self, logs={}):
  if not ('roc_auc_val' in self.params['metrics']):
   self.params['metrics'].append('roc_auc_val')
 
 def on_train_end(self, logs={}):
  pass
 
 def on_epoch_begin(self, epoch, logs={}):
  pass
 
 def on_epoch_end(self, epoch, logs={}):
  logs['roc_auc_val']=float('-inf')
  if(self.validation_data):
   logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
            self.model.predict(self.validation_data[0],
                 batch_size=self.predict_batch_size))
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import GRU
import keras
from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score
from keras import metrics
 
cb = [
 my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping!
 EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max')
]
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features)))
# model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
 
model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #这里就可以写其他评估标准
model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2,
   callbacks=cb,validation_split=0.2,
   shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)

亲测有效!

以上这篇keras绘制acc和loss曲线图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
pip 错误unused-command-line-argument-hard-error-in-future解决办法
Jun 01 Python
python万年历实现代码 含运行结果
May 20 Python
浅谈django model postgres的json字段编码问题
Jan 05 Python
python开头的coding设置方法
Aug 08 Python
python实现kNN算法识别手写体数字的示例代码
Aug 16 Python
python中的TCP(传输控制协议)用法实例分析
Nov 15 Python
python实现智能语音天气预报
Dec 02 Python
python 实现简单的FTP程序
Dec 27 Python
python使用OpenCV模块实现图像的融合示例代码
Apr 10 Python
基于Python编写一个计算器程序,实现简单的加减乘除和取余二元运算
Aug 05 Python
python爬虫scrapy框架的梨视频案例解析
Feb 20 Python
Pytest allure 命令行参数的使用
Apr 18 Python
Python定义一个函数的方法
Jun 15 #Python
python是怎么被发明的
Jun 15 #Python
Keras 利用sklearn的ROC-AUC建立评价函数详解
Jun 15 #Python
Python如何在windows环境安装pip及rarfile
Jun 15 #Python
keras训练曲线,混淆矩阵,CNN层输出可视化实例
Jun 15 #Python
Python3 requests模块如何模仿浏览器及代理
Jun 15 #Python
keras读取训练好的模型参数并把参数赋值给其它模型详解
Jun 15 #Python
You might like
phpmyadmin的#1251问题
2006/11/25 PHP
php数组的概述及分类与声明代码演示
2013/02/26 PHP
php中如何同时使用session和cookie来保存用户登录信息
2013/07/05 PHP
Yii2分页的使用及其扩展方法详解
2016/05/23 PHP
详解PHP实现定时任务的五种方法
2016/07/25 PHP
Yii框架使用魔术方法实现跨文件调用功能示例
2017/05/20 PHP
php注册审核重点解析(数据访问)
2017/05/23 PHP
基于ThinkPHP删除目录及目录文件函数
2020/10/28 PHP
js操作数组函数实例小结
2015/12/10 Javascript
基于javascript实现九九乘法表
2016/03/27 Javascript
JavaScript学习总结(一) ECMAScript、BOM、DOM(核心、浏览器对象模型与文档对象模型)
2018/01/07 Javascript
Vue2.0中集成UEditor富文本编辑器的方法
2018/03/03 Javascript
VUE解决 v-html不能触发点击事件的问题
2019/10/28 Javascript
vue.js实现简单购物车功能
2020/05/30 Javascript
详解React路由传参方法汇总记录
2020/11/29 Javascript
[01:04:14]OG vs Winstrike 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
Centos5.x下升级python到python2.7版本教程
2015/02/14 Python
Python实现简单的HttpServer服务器示例
2017/09/25 Python
Python内置模块turtle绘图详解
2017/12/09 Python
浅谈python中np.array的shape( ,)与( ,1)的区别
2018/06/04 Python
python单线程文件传输的实例(C/S)
2019/02/13 Python
详解Python列表赋值复制深拷贝及5种浅拷贝
2019/05/15 Python
Python基础学习之基本数据结构详解【数字、字符串、列表、元组、集合、字典】
2019/06/18 Python
tesserocr与pytesseract模块的使用方法解析
2019/08/30 Python
Django发送邮件功能实例详解
2019/09/02 Python
OpenCV Python实现拼图小游戏
2020/03/23 Python
三星美国官网:Samsung美国
2017/02/06 全球购物
Halston Heritage官网:简洁的日装,稍显奢华的晚装
2018/11/20 全球购物
新加坡网上美容店:Hermo新加坡
2019/06/19 全球购物
大专生工程监理求职信
2013/10/04 职场文书
共产党员岗位承诺书
2014/05/29 职场文书
合伙经营协议书范本(通用版)
2014/12/03 职场文书
小学生作文评语集锦
2014/12/25 职场文书
感谢信范文大全
2015/01/23 职场文书
python opencv通过按键采集图片源码
2021/05/20 Python
详解JAVA中的OPTIONAL
2021/06/14 Java/Android