keras读取训练好的模型参数并把参数赋值给其它模型详解


Posted in Python onJune 15, 2020

介绍

本博文中的代码,实现的是加载训练好的模型model_halcon_resenet.h5,并把该模型的参数赋值给两个不同的新的model。

函数式模型

官网上给出的调用一个训练好模型,并输出任意层的feature。

model = Model(inputs=base_model.input, outputs=base_model.get_layer(‘block4_pool').output)

但是这有一个问题,就是新的model,如果输入inputs和训练好的model的inputs大小不同呢?比如我想建立一个输入是600x600x3的新model,但是训练好的model输入是200x200x3,而这时我又想调用训练好模型的卷积核参数,这时该怎么办呢?

其实想一下,用训练好的模型参数,即使输入的尺寸不同,但是这些模型参数仍然可以处理计算,只是输出的feature map大小不同。那到底怎么赋值呢?其实很简单

在定义新的model时,新的model层在定义时,需要加上名字,而这个名字就是训练好的模型的每层名字。如下代码所示:

inputs=Input(shape=(400,500,3))
X=Conv2D(32, (3, 3),name=“conv2d_1”)(inputs)
X=BatchNormalization(name=“batch_normalization_1”)(X)
X=Activation(‘relu',name=“activation_1”)(X)

最后通过以下代码即可建立一个新的模型并拥有训练好模型的参数:

model=Model(inputs=inputs, outputs=X)
model.load_weights(‘model_halcon_resenet.h5', by_name=True)

源代码

from keras.models import load_model
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
from keras.layers import Conv2D, MaxPooling2D,merge
from keras.layers import BatchNormalization,Activation
from keras.layers import Input, Dense
from PIL import Image
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten,Input
from keras.layers import Conv2D, MaxPooling2D,merge,AveragePooling2D,GlobalAveragePooling2D
from keras.layers import BatchNormalization,Activation
from sklearn.model_selection import train_test_split
from keras.applications.densenet import DenseNet169, DenseNet121
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.inception_v3 import InceptionV3
from keras.optimizers import SGD
from keras import regularizers
from keras.models import Model
import tensorflow as tf
from PIL import Image
from keras.callbacks import TensorBoard
import os
import cv2
from keras import backend as K
from model import focal_loss
import keras.losses

#ReadMe 该代码是参考fast rcnn系列,先对整幅图像提取特征feature map,然后从原图对应位置上映射到feature map,并对feature map进行
# 切片,从而提取对应某个位置上的特征,并把该特征送进后面的识别网络进行分类识别。
keras.losses.focal_loss = focal_loss#这句代码是为了引入定义的loss
base_model=load_model('model_halcon_resenet.h5')
base_model.summary()

inputs=Input(shape=(400,500,3))
X=Conv2D(32, (3, 3),name="conv2d_1")(inputs)
X=BatchNormalization(name="batch_normalization_1")(X)
X=Activation('relu',name="activation_1")(X)
#第一个残差模块
X_1=Conv2D(32, (3, 3),padding='same',name="conv2d_2")(X)
X_1=BatchNormalization(name="batch_normalization_2")(X_1)
X_1= Activation('relu',name="activation_2")(X_1)
X_1 = Conv2D(32, (3, 3),padding='same',name="conv2d_3")(X_1)
X_1 = BatchNormalization(name="batch_normalization_3")(X_1)
merge_data = merge([X_1, X], mode='sum',name="merge_1")
X = Activation('relu',name="activation_3")(merge_data)
#第一个残差模块结束
X=MaxPooling2D(pool_size=(2, 2),strides=(2,2),name="max_pooling2d_1")(X)
X=Conv2D(64, (3, 3),kernel_regularizer=regularizers.l2(0.01),name="conv2d_4")(X)
X=BatchNormalization(name="batch_normalization_4")(X)
X=Activation('relu',name="activation_4")(X)
#第二个残差模块
X_2=Conv2D(64, (3, 3),padding='same',name="conv2d_5")(X)
X_2=BatchNormalization(name="batch_normalization_5")(X_2)
X_2= Activation('relu',name="activation_5")(X_2)
X_2 = Conv2D(64, (3, 3),padding='same',name="conv2d_6")(X_2)
X_2 = BatchNormalization(name="batch_normalization_6")(X_2)
merge_data = merge([X_2, X], mode='sum',name="merge_2")
X = Activation('relu',name="activation_6")(merge_data)
#第二个残差模块结束
X = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),name="max_pooling2d_2")(X)
X=Conv2D(64, (3, 3),name="conv2d_7")(X)
X=BatchNormalization(name="batch_normalization_7")(X)
X=Activation('relu',name="activation_7")(X)
X=MaxPooling2D(pool_size=(2, 2),strides=(2,2),name="max_pooling2d_3")(X)
#第三个残差模块开始
X_3=Conv2D(64, (3, 3),padding='same',name="conv2d_8")(X)
X_3=BatchNormalization(name="batch_normalization_8")(X_3)
X_3= Activation('relu',name="activation_8")(X_3)
X_3 = Conv2D(64, (3, 3),padding='same',name="conv2d_9")(X_3)
X_3 = BatchNormalization(name="batch_normalization_9")(X_3)
merge_data = merge([X_3, X], mode='sum',name="merge_3")
X = Activation('relu',name="activation_9")(merge_data)
#第三个残差模块结束
X=Conv2D(32, (3, 3),kernel_regularizer=regularizers.l2(0.01),name="conv2d_10")(X)
X=BatchNormalization(name="batch_normalization_10")(X)
X=Activation('relu',name="activation_10")(X)
#第四个残差模块开始
X_4=Conv2D(32, (3, 3),padding='same',name="conv2d_11")(X)
X_4=BatchNormalization(name="batch_normalization_11")(X_4)
X_4= Activation('relu',name="activation_11")(X_4)
X_4 = Conv2D(32, (3, 3),padding='same',name="conv2d_12")(X_4)
X_4 = BatchNormalization(name="batch_normalization_12")(X_4)
merge_data = merge([X_4, X], mode='sum',name="merge_4")
X = Activation('relu',name="activation_12")(merge_data)
#第四个残差模块结束
X = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),name="max_pooling2d_4")(X)
X = Conv2D(64, (3, 3),name="conv2d_13")(X)
X = BatchNormalization(name="batch_normalization_13")(X)
X = Activation('relu',name="activation_13")(X)
#第五个残差模块开始
X_5=Conv2D(64, (3, 3),padding='same',name="conv2d_14")(X)
X_5=BatchNormalization(name="batch_normalization_14")(X_5)
X_5= Activation('relu',name="activation_14")(X_5)
X_5 = Conv2D(64, (3, 3),padding='same',name="conv2d_15")(X_5)
X_5 = BatchNormalization(name="batch_normalization_15")(X_5)
merge_data = merge([X_5, X], mode='sum',name="merge_5")
X = Activation('relu',name="activation_15")(merge_data)
#第五个残差模块结束
model=Model(inputs=inputs, outputs=X)
model.load_weights('model_halcon_resenet.h5', by_name=True)
#读取指定图像数据
image_dir='C:/Users/18301/Desktop/blister/new/blister_mixed_11.png'
img = image.load_img(image_dir, target_size=(400, 500))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
#利用第一个模型预测出特征数据,并对特征数据进行切片
feature_map=model.predict(x)
T=np.array(feature_map)
f_1=T[:,16:21,0:10,:]
print(f_1.shape)
print(feature_map.shape)
#第一个模型没有问题
#定义第二个模型
inputs_sec=Input(shape=(1,5,10,64))
X_= Flatten(name="flatten_1")(inputs_sec)
X_ = Dense(256, activation='relu',name="dense_1")(X_)
X_ = Dropout(0.5,name="dropout_1")(X_)
predictions = Dense(6, activation='softmax',name="dense_2")(X_)
model_sec=Model(inputs=inputs_sec, outputs=predictions)
model_sec.load_weights('model_halcon_resenet.h5', by_name=True)
#第二个模型定义结束
model_sec.summary()
#开始对整幅图像进行切片,并记录坐标位置
pic=cv2.imread(image_dir)
cor_list=[]
name_list=['blank','green_blank','red_blank','yellow','yellow_balnk','yellow_blue']
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(3):
 for j in range(5):
 if(i==2):
  cut_feature = T[:, 4 * j:4 * j + 5, 17:27, :]
  data = np.expand_dims(cut_feature, axis=0)
  result = model_sec.predict(data)
  print(result)
  result_data=result[0].tolist()
  #如果置信度过低,则舍弃
  # if(max(result_data)<=0.7):
  # continue
  index_num = result_data.index(max(result_data))
  name=name_list[index_num]
  cor_list = [i * 160 + 6, j * 80] # 每个切片数据,映射到原图上,检测框对应的左上角坐标
  x=cor_list[0]
  y=cor_list[1]
  cv2.rectangle(pic, (160 * i + 6, 80 * j), ((i + 1) * 160 + 6, 80 * (j+ 1)), (0, 255, 0), 2)
  cv2.putText(pic, name, (x + 40, y + 40), font, 0.5, (0, 0, 255), 1)
 else:
  cut_feature = T[:, 4 * j:4 * j + 5, 9 * i:9 * i + 10, :]
  data = np.expand_dims(cut_feature, axis=0)
  result = model_sec.predict(data)
  print(result)
  result_data = result[0].tolist()
  #如果置信度过低,则舍弃
  # if (max(result_data) <= 0.7):
  # continue
  index_num = result_data.index(max(result_data))
  name = name_list[index_num]
  cor_list = [i * 160 + 6, j * 80] # 每个切片数据,映射到原图上,检测框对应的左上角坐标
  x = cor_list[0]
  y = cor_list[1]
  cv2.rectangle(pic, (160 * i + 6, 80 * j), ((i + 1) * 160 + 6, 80 * (j + 1)), (0, 255, 0), 2)
  cv2.putText(pic, name, (x + 40, y + 40), font, 0.5, (0, 0, 255), 1)

cv2.imshow('pic',pic)
cv2.waitKey(0)
cv2.destroyAllWindows()
# data= np.expand_dims(f_1, axis=0)
# result=model_sec.predict(data)
# print(result)
#第二个模型可以完全预测,没有问题

补充知识:加载训练好的模型参数,但是权重一直变化

keras读取训练好的模型参数并把参数赋值给其它模型详解

变量初始化会导致权重发生变化,去掉就好了。

以上这篇keras读取训练好的模型参数并把参数赋值给其它模型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
从零学python系列之数据处理编程实例(二)
May 22 Python
python进阶教程之动态类型详解
Aug 30 Python
Python在图片中添加文字的两种方法
Apr 29 Python
python使用threading获取线程函数返回值的实现方法
Nov 15 Python
Python 中的range(),以及列表切片方法
Jul 02 Python
pandas筛选某列出现编码错误的解决方法
Nov 07 Python
Python 从相对路径下import的方法
Dec 04 Python
Pandas-Cookbook 时间戳处理方式
Dec 07 Python
python-OpenCV 实现将数组转换成灰度图和彩图
Jan 09 Python
Django框架配置mysql数据库实现过程
Apr 22 Python
django ORM之values和annotate使用详解
May 19 Python
Python requests及aiohttp速度对比代码实例
Jul 16 Python
keras得到每层的系数方式
Jun 15 #Python
Python类及获取对象属性方法解析
Jun 15 #Python
在Keras中实现保存和加载权重及模型结构
Jun 15 #Python
简单了解Python多态与属性运行原理
Jun 15 #Python
Python类super()及私有属性原理解析
Jun 15 #Python
Keras 实现加载预训练模型并冻结网络的层
Jun 15 #Python
Python StringIO及BytesIO包使用方法解析
Jun 15 #Python
You might like
德生PL450的电路分析和低放电路的改进办法
2021/03/02 无线电
基于PHPExcel的常用方法总结
2013/06/13 PHP
解析Linux下Varnish缓存的配置优化
2013/06/20 PHP
PHP生成数组再传给js的方法
2014/08/07 PHP
PHP 7.0新增加的特性介绍
2017/06/08 PHP
PHP 图片处理
2020/09/16 PHP
js日期联动示例
2014/05/02 Javascript
jQuery中on绑定事件后引发的事件冒泡问题如何解决
2016/05/25 Javascript
JS实现针对给定时间的倒计时功能示例
2017/04/11 Javascript
ES6学习之变量的两种命名方法示例
2017/07/18 Javascript
详解Angular调试技巧之报错404(not found)
2018/01/31 Javascript
JavaScript实现的文本框placeholder提示文字功能示例
2018/07/25 Javascript
vscode中vue-cli项目es-lint的配置方法
2018/07/30 Javascript
js实现图片粘贴到网页
2019/12/06 Javascript
Python 多核并行计算的示例代码
2017/11/07 Python
Python使用matplotlib的pie函数绘制饼状图功能示例
2018/01/08 Python
PyCharm代码整体缩进,反向缩进的方法
2018/06/25 Python
python的scikit-learn将特征转成one-hot特征的方法
2018/07/10 Python
PyCharm代码提示忽略大小写设置方法
2018/10/28 Python
使用Python调取任意数字资产钱包余额功能
2019/08/15 Python
Python实现把多维数组展开成DataFrame
2019/11/30 Python
如何基于Python制作有道翻译小工具
2019/12/16 Python
pytorch之ImageFolder使用详解
2020/01/06 Python
html5 视频播放解决方案
2016/11/06 HTML / CSS
Sperry官网:帆船鞋创始品牌
2016/09/07 全球购物
上海中网科技笔试题
2012/02/19 面试题
女大学生毕业找工作的自我评价
2013/10/03 职场文书
平面设计岗位职责
2013/12/14 职场文书
退休感言
2014/01/28 职场文书
学前教育专业求职信
2014/09/02 职场文书
银行员工犯错检讨书
2014/09/16 职场文书
初中生庆国庆演讲稿范文2014
2014/09/25 职场文书
幼儿园小班见习报告
2014/10/31 职场文书
公司中层管理培训心得体会
2016/01/11 职场文书
MySQL中JOIN连接的基本用法实例
2022/06/05 MySQL
Java多线程并发FutureTask使用详解
2022/06/28 Java/Android