Pytorch使用MNIST数据集实现基础GAN和DCGAN详解


Posted in Python onJanuary 10, 2020

原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的“fake”数据,目的是网络生成的fake数据可以“骗过”判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据。总的来说是:判别器区分真实数据和fake数据的能力越强越好;生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能交替训练网络。

需要搭建生成器网络和判别器网络,训练的时候交替训练。

首先训练判别器的参数,固定生成器的参数,让判别器判断生成器生成的数据,让其和0接近,让判别器判断真实数据,让其和1接近;

接着训练生成器的参数,固定判别器的参数,让生成器生成的数据进入判别器,让判断结果和1接近。生成器生成数据需要给定随机初始值

线性版:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.gridspec as gridspec
 
def showimg(images,count):
 images=images.detach().numpy()[0:16,:]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = int(np.sqrt((images.shape[1])))
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 # gs.update(wspace=0, hspace=0)
 print('starting...')
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape([width,width]),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
 print('showing...')
 plt.tight_layout()
 plt.savefig('./GAN_Image/%d.png'%count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Linear(784,300),
  nn.LeakyReLU(0.2),
  nn.Linear(300,150),
  nn.LeakyReLU(0.2),
  nn.Linear(150,1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 return x
 
class generator(nn.Module):
 def __init__(self,input_size):
 super(generator,self).__init__()
 self.gen=nn.Sequential(
  nn.Linear(input_size,150),
  nn.ReLU(True),
  nn.Linear(150,300),
  nn.ReLU(True),
  nn.Linear(300,784),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.gen(x)
 return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension)
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  real_img=img.view(num_img,-1)#展开为28*28=784
  real_label=torch.ones(num_img)#真实label为1
  fake_label=torch.zeros(num_img)#假的label为0
 
  #compute loss of real_img
  real_out=D(real_img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好
 
  #compute loss of fake_img
  z=torch.randn(num_img,z_dimension)#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数
 
  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = torch.ones(num_img) # 真实label为1
  z = torch.randn(num_img, z_dimension) # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 # plt.show()
 count += 1

这里的图分别是 epoch为0、50、100、150、190的运行结果,可以看到图片中的数字并不单一

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

卷积版 Deep Convolutional Generative Adversarial Networks:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
 
import matplotlib.gridspec as gridspec
import os
 
def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 print(images.shape)
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
# print('showing...')
 plt.tight_layout()
# plt.savefig('./GAN_Imaget/%d.png'%count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Conv2d(1,32,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2)),
 
  nn.Conv2d(32,64,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2))
 )
 self.fc=nn.Sequential(
  nn.Linear(7 * 7 * 64, 1024),
  nn.LeakyReLU(0.2, True),
  nn.Linear(1024, 1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 x=x.view(x.size(0),-1)
 x=self.fc(x)
 return x
 
class generator(nn.Module):
 def __init__(self,input_size,num_feature):
 super(generator,self).__init__()
 self.fc=nn.Linear(input_size,num_feature) #1*56*56
 self.br=nn.Sequential(
  nn.BatchNorm2d(1),
  nn.ReLU(True)
 )
 self.gen=nn.Sequential(
  nn.Conv2d(1,50,3,stride=1,padding=1),
  nn.BatchNorm2d(50),
  nn.ReLU(True),
 
  nn.Conv2d(50,25,3,stride=1,padding=1),
  nn.BatchNorm2d(25),
  nn.ReLU(True),
 
  nn.Conv2d(25,1,2,stride=2),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.fc(x)
 x=x.view(x.size(0),1,56,56)
 x=self.br(x)
 x=self.gen(x)
 return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  img=Variable(img).cuda()
  real_label=Variable(torch.ones(num_img)).cuda()#真实label为1
  fake_label=Variable(torch.zeros(num_img)).cuda()#假的label为0
 
  #compute loss of real_img
  real_out=D(img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好
 
  #compute loss of fake_img
  z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数
 
  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = Variable(torch.ones(num_img)).cuda() # 真实label为1
  z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
  # if ((i+1)%1000==0):
  # print("[%d/%d] GLoss: %.5f" % (i + 1, gepoch, g_loss.data[0]))
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 plt.show()
 count += 1

这里的gepoch设置为1,运行39次的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

gepoch设置为2,运行0、25、50、75、100次的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

gepoch设置为3,运行25、50、75次的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

gepoch设置为4,运行0、10、20、30、35次的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

gepoch设置为5,运行0、10、20、25、29次的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

gepoch设置为3,z_dimension设置为190,epoch运行0、10、15、20、25、35的结果是:

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

可以看到生成的数字基本没有太多的规律,可能最终都是同个数字,不能生成指定的数字,CGAN就很好的解决这个问题,可以生成指定的数字 Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python pdb调试方法分享
Jan 21 Python
Ubuntu 14.04+Django 1.7.1+Nginx+uwsgi部署教程
Nov 18 Python
python访问系统环境变量的方法
Apr 29 Python
深入解析Python编程中JSON模块的使用
Oct 15 Python
Python正确重载运算符的方法示例详解
Aug 27 Python
Python lambda函数基本用法实例分析
Mar 16 Python
python实现验证码识别功能
Jun 07 Python
Django + Uwsgi + Nginx 实现生产环境部署的方法
Jun 20 Python
PyQtGraph在pyqt中的应用及安装过程
Aug 04 Python
Python +Selenium解决图片验证码登录或注册问题(推荐)
Feb 09 Python
详解Ubuntu环境下部署Django+uwsgi+nginx总结
Apr 02 Python
Python pip安装第三方库实现过程解析
Jul 09 Python
Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式
Jan 10 #Python
pytorch实现mnist分类的示例讲解
Jan 10 #Python
pytorch 准备、训练和测试自己的图片数据的方法
Jan 10 #Python
pytorch GAN伪造手写体mnist数据集方式
Jan 10 #Python
MNIST数据集转化为二维图片的实现示例
Jan 10 #Python
pytorch:实现简单的GAN示例(MNIST数据集)
Jan 10 #Python
pytorch GAN生成对抗网络实例
Jan 10 #Python
You might like
PHP备份/还原MySQL数据库的代码
2011/01/06 PHP
php绘图之生成饼状图的方法
2015/01/24 PHP
Yii2.0预定义的别名功能小结
2016/07/04 PHP
PHP常用日期加减计算方法实例小结
2018/07/31 PHP
PHP删除字符串中非字母数字字符方法总结
2019/01/20 PHP
JavaScript ECMA-262-3 深入解析.第三章.this
2011/09/28 Javascript
jQuery操作select的实例代码
2012/06/14 Javascript
纯js实现遮罩层效果原理分析
2014/05/27 Javascript
JS创建类和对象的两种不同方式
2014/08/08 Javascript
javascript获取当前鼠标坐标的方法
2015/01/10 Javascript
配置Grunt的Task时通配符支持和动态生成文件名问题
2015/09/06 Javascript
JS模态窗口返回值兼容问题的完美解决方法
2016/05/28 Javascript
AngularJS页面带参跳转及参数解析操作示例
2017/06/28 Javascript
jQuery dateRangePicker插件使用方法详解
2017/07/28 jQuery
js 毫秒转天时分秒的实例
2017/11/17 Javascript
在Vue-cli里应用Vuex的state和mutations方法
2018/09/16 Javascript
vue父子组件的通信方法(实例详解)
2019/11/10 Javascript
微信小程序关键字变色实现代码实例
2019/12/13 Javascript
[03:32]2014DOTA2西雅图邀请赛 CIS外卡赛赛前black专访
2014/07/09 DOTA
详解Python中for循环的使用
2015/04/14 Python
Python中使用platform模块获取系统信息的用法教程
2016/07/08 Python
Windows平台Python连接sqlite3数据库的方法分析
2017/07/12 Python
python实现复制大量文件功能
2019/08/31 Python
keras和tensorflow使用fit_generator 批次训练操作
2020/07/03 Python
python如何将图片转换素描画
2020/09/08 Python
英国信箱在线鲜花速递公司:Bloom & Wild
2019/03/10 全球购物
Linux开机引导的步骤是什么
2014/02/26 面试题
工作表现自我评价
2014/02/08 职场文书
消防安全责任书
2014/04/14 职场文书
工商管理专业自荐信
2014/06/03 职场文书
语文教育专业求职信
2014/06/28 职场文书
群众路线对照检查材料思想汇报怎么写
2014/09/18 职场文书
离婚协议书范文2014
2014/10/16 职场文书
介绍信如何写
2015/01/31 职场文书
Django中session进行权限管理的使用
2021/07/09 Python
详细谈谈JavaScript中循环之间的差异
2021/08/23 Javascript