Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式


Posted in Python onJanuary 10, 2020

CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息。

这里用传统的卷积方式实现CGAN。

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
import pickle
import copy
 
import matplotlib.gridspec as gridspec
import os
 
def save_model(model, filename): #保存为CPU中可以打开的模型
 state = model.state_dict()
 x=state.copy()
 for key in x: 
  x[key] = x[key].clone().cpu()
 torch.save(x, filename)
 
def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
#  plt.tight_layout()
 plt.savefig(r'./CGAN/images/%d.png'% count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator,self).__init__()
  self.dis=nn.Sequential(
   nn.Conv2d(1,32,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2)),
 
   nn.Conv2d(32,64,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2))
  )
  self.fc=nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 def forward(self, x):
  x=self.dis(x)
  x=x.view(x.size(0),-1)
  x=self.fc(x)
  return x
 
class generator(nn.Module):
 def __init__(self,input_size,num_feature):
  super(generator,self).__init__()
  self.fc=nn.Linear(input_size,num_feature) #1*56*56
  self.br=nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen=nn.Sequential(
   nn.Conv2d(1,50,3,stride=1,padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50,25,3,stride=1,padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25,1,2,stride=2),
   nn.Tanh()
  )
 def forward(self, x):
  x=self.fc(x)
  x=x.view(x.size(0),1,56,56)
  x=self.br(x)
  x=self.gen(x)
  return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=110
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 119
 gepoch = 1
 for i in range(epoch):
  for (img, label) in trainloader:
   labels_onehot = np.zeros((num_img,10))
   labels_onehot[np.arange(num_img),label.numpy()]=1
#    img=img.view(num_img,-1)
#    img=np.concatenate((img.numpy(),labels_onehot))
#    img=torch.from_numpy(img)
   img=Variable(img).cuda()
   real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
   fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0
 
   #compute loss of real_img
   real_out=D(img) #真实图片送入判别器D输出0~1
   d_loss_real=criterion(real_out,real_label)#得到loss
   real_scores=real_out#真实图片放入判别器输出越接近1越好
 
   #compute loss of fake_img
   z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
   fake_img=G(z)#将向量放入生成网络G生成一张图片
   fake_out=D(fake_img)#判别器判断假的图片
   d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
   fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
   #D bp and optimize
   d_loss=d_loss_real+d_loss_fake
   d_optimizer.zero_grad() #判别器D的梯度归零
   d_loss.backward() #反向传播
   d_optimizer.step() #更新判别器D参数
 
   #生成器G的训练compute loss of fake_img
   for j in range(gepoch):
    z =torch.randn(num_img, 100) # 随机生成向量
    z=np.concatenate((z.numpy(),labels_onehot),axis=1)
    z=Variable(torch.from_numpy(z).float()).cuda()
    fake_img = G(z) # 将向量放入生成网络G生成一张图片
    output = D(fake_img) # 经过判别器得到结果
    g_loss = criterion(output, real_label)#得到假的图片与真实标签的loss
    #bp and optimize
    g_optimizer.zero_grad() #生成器G的梯度归零
    g_loss.backward() #反向传播
    g_optimizer.step()#更新生成器G参数
    temp=real_label
  if (i%10==0) and (i!=0):
   print(i)
   torch.save(G.state_dict(),r'./CGAN/Generator_cuda_%d.pkl'%i)
   torch.save(D.state_dict(), r'./CGAN/Discriminator_cuda_%d.pkl' % i)
   save_model(G, r'./CGAN/Generator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
   save_model(D, r'./CGAN/Discriminator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
  print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
     'D real: {:.6f}, D fake: {:.6f}'.format(
    i, epoch, d_loss.data[0], g_loss.data[0],
    real_scores.data.mean(), fake_scores.data.mean()))
  temp=temp.to('cpu')
  _,x=torch.max(temp,1)
  x=x.numpy()
  print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])
  showimg(fake_img,count)
  plt.show()
  count += 1

和基础GAN Pytorch使用MNIST数据集实现基础GAN 里面的卷积版网络比较起来,这里修改的主要是这几个地方:

生成网络的输入值增加了真实图片的类标签,生成网络的初始向量z_dimension之前用的是100维,由于MNIST有10类,Onehot以后一张图片的类标签是10维,所以将类标签放在后面z_dimension=100+10=110维;

训练生成器的时候,由于生成网络的输入向量z_dimension=110维,而且是100维随机向量和10维真实图片标签拼接,需要做相应的拼接操作;

z =torch.randn(num_img, 100) # 随机生成向量
z=np.concatenate((z.numpy(),labels_onehot),axis=1)
z=Variable(torch.from_numpy(z).float()).cuda()

由于计算Loss和生成网络的输入向量都需要用到真实图片的类标签,需要重新生成real_label,对label进行onehot。其中real_label就是真实图片的标签,当num_img=100时,real_label的维度是(100,10);

labels_onehot = np.zeros((num_img,10))
labels_onehot[np.arange(num_img),label.numpy()]=1
img=Variable(img).cuda()
real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0

real_label的维度是(100,10),计算Loss的时候也要有对应的维度,判别网络的输出也不再是标量,而是要修改为10维;

nn.Linear(1024, 10)

在输出图片的同时输出期望的类标签。

temp=temp.to('cpu')
_,x=torch.max(temp,1)#返回值有两个,第一个是按列的最大值,第二个是相应最大值的列标号
x=x.numpy()
print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])

epoch等于0、25、50、75、100时训练的结果:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

可以看到训练到后面图像反而变模糊可能是训练过拟合

用模型生成指定的数字:

在训练的过程中保存了训练好的模型,根据输出图片的清晰度,用清晰度较高的模型,使用随机向量和10维类标签来指定生成的数字。

import torch
import torch.nn as nn
import pickle
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
num_img=9
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator, self).__init__()
  self.dis = nn.Sequential(
   nn.Conv2d(1, 32, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2)),
 
   nn.Conv2d(32, 64, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2))
  )
  self.fc = nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 
 def forward(self, x):
  x = self.dis(x)
  x = x.view(x.size(0), -1)
  x = self.fc(x)
  return x
 
 
class generator(nn.Module):
 def __init__(self, input_size, num_feature):
  super(generator, self).__init__()
  self.fc = nn.Linear(input_size, num_feature) # 1*56*56
  self.br = nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen = nn.Sequential(
   nn.Conv2d(1, 50, 3, stride=1, padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50, 25, 3, stride=1, padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25, 1, 2, stride=2),
   nn.Tanh()
  )
 
 def forward(self, x):
  x = self.fc(x)
  x = x.view(x.size(0), 1, 56, 56)
  x = self.br(x)
  x = self.gen(x)
  return x
 
 
def show(images):
 images = images.detach().numpy()
 images = 255 * (0.5 * images + 0.5)
 images = images.astype(np.uint8)
 plt.figure(figsize=(4, 4))
 width = images.shape[2]
 gs = gridspec.GridSpec(1, num_img, wspace=0, hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 plt.tight_layout()
 # plt.savefig(r'drive/深度学习/DCGAN/images/%d.png' % count, bbox_inches='tight')
 return width
 
def show_all(images_all):
 x=images_all[0]
 for i in range(1,len(images_all),1):
  x=np.concatenate((x,images_all[i]),0)
 print(x.shape)
 x = 255 * (0.5 * x + 0.5)
 x = x.astype(np.uint8)
 plt.figure(figsize=(9, 10))
 width = x.shape[2]
 gs = gridspec.GridSpec(10, num_img, wspace=0, hspace=0)
 for i, img in enumerate(x):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 
 
 # 导入相应的模型
z_dimension = 110
D = discriminator()
G = generator(z_dimension, 3136) # 1*56*56
D.load_state_dict(torch.load(r'./CGAN/Discriminator.pkl'))
G.load_state_dict(torch.load(r'./CGAN/Generator.pkl'))
# 依次生成0到9
lis=[]
for i in range(10):
 z = torch.randn((num_img, 100)) # 随机生成向量
 x=np.zeros((num_img,10))
 x[:,i]=1
 z = np.concatenate((z.numpy(), x),1)
 z = torch.from_numpy(z).float()
 fake_img = G(z) # 将向量放入生成网络G生成一张图片
 lis.append(fake_img.detach().numpy())
 output = D(fake_img) # 经过判别器得到结果
 show(fake_img)
 plt.savefig('./CGAN/generator/%d.png' % i, bbox_inches='tight')
 
show_all(lis)
plt.savefig('./CGAN/generator/all.png', bbox_inches='tight')
plt.show()

生成的结果是:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用PythonMagick将jpg图片转换成ico图片的方法
Mar 26 Python
python根据出生日期返回年龄的方法
Mar 26 Python
Linux中安装Python的交互式解释器IPython的教程
Jun 13 Python
Python实现删除文件中含“指定内容”的行示例
Jun 09 Python
浅谈Python peewee 使用经验
Oct 20 Python
Python设计模式之中介模式简单示例
Jan 09 Python
Python logging管理不同级别log打印和存储实例
Jan 19 Python
python实现windows下文件备份脚本
May 27 Python
详解python使用turtle库来画一朵花
Mar 21 Python
python可视化爬虫界面之天气查询
Jul 03 Python
python构建指数平滑预测模型示例
Nov 21 Python
详解python 内存优化
Aug 17 Python
pytorch实现mnist分类的示例讲解
Jan 10 #Python
pytorch 准备、训练和测试自己的图片数据的方法
Jan 10 #Python
pytorch GAN伪造手写体mnist数据集方式
Jan 10 #Python
MNIST数据集转化为二维图片的实现示例
Jan 10 #Python
pytorch:实现简单的GAN示例(MNIST数据集)
Jan 10 #Python
pytorch GAN生成对抗网络实例
Jan 10 #Python
解决pytorch报错:AssertionError: Invalid device id的问题
Jan 10 #Python
You might like
整合了前面的PHP数据库连接类~~做成一个分页类!
2006/11/25 PHP
php中获得视频时间总长度的另一种方法
2011/09/15 PHP
php中将一个对象保存到Session中的方法
2015/03/13 PHP
如何使用PHP给图片加水印
2016/10/12 PHP
Docker搭建自己的PHP开发环境
2018/02/24 PHP
php 中htmlentities导致中文无法查询问题
2018/09/10 PHP
js option删除代码集合
2008/11/12 Javascript
js中数组Array的一些常用方法总结
2013/08/12 Javascript
jquery交替变换颜色的三种方法 实例代码
2013/11/19 Javascript
javascript面向对象特性代码实例
2014/06/12 Javascript
JavaScript lastIndexOf方法入门实例(计算指定字符在字符串中最后一次出现的位置)
2014/10/17 Javascript
node.js抓取并分析网页内容有无特殊内容的js文件
2015/11/17 Javascript
基于jQuery实现鼠标点击导航菜单水波动画效果附源码下载
2016/01/06 Javascript
AngularJS模块学习之Anchor Scroll
2016/01/19 Javascript
Vue-Router实现页面正在加载特效方法示例
2017/02/12 Javascript
JavaScript两个变量交换值的实现方法
2017/03/01 Javascript
利用JavaScript如何查询某个值是否数组内
2017/07/30 Javascript
Node做中转服务器转发接口
2017/10/18 Javascript
解决easyui日期时间框ie的兼容的问题
2018/03/01 Javascript
Python入门_浅谈字符串的分片与索引、字符串的方法
2017/05/16 Python
Python中numpy模块常见用法demo实例小结
2019/03/16 Python
python时间序列按频率生成日期的方法
2019/05/14 Python
python对常见数据类型的遍历解析
2019/08/27 Python
python多线程使用方法实例详解
2019/12/30 Python
Python venv虚拟环境配置过程解析
2020/07/08 Python
娇韵诗Clarins意大利官方网站:法国天然护肤品牌
2020/03/11 全球购物
房地产员工找工作的自我评价
2013/11/15 职场文书
客服主管岗位职责
2013/12/13 职场文书
2014年团委工作总结
2014/11/13 职场文书
本科毕业论文致谢怎么写
2015/05/14 职场文书
灵魂歌王观后感
2015/06/17 职场文书
酒店厨房管理制度
2015/08/06 职场文书
旅行社计调工作总结
2015/08/12 职场文书
Python提取PDF指定内容并生成新文件
2021/06/09 Python
Redis 常见使用场景
2021/08/30 Redis
vue @click.native 绑定原生点击事件
2022/04/22 Vue.js