Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式


Posted in Python onJanuary 10, 2020

CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息。

这里用传统的卷积方式实现CGAN。

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
import pickle
import copy
 
import matplotlib.gridspec as gridspec
import os
 
def save_model(model, filename): #保存为CPU中可以打开的模型
 state = model.state_dict()
 x=state.copy()
 for key in x: 
  x[key] = x[key].clone().cpu()
 torch.save(x, filename)
 
def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
#  plt.tight_layout()
 plt.savefig(r'./CGAN/images/%d.png'% count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator,self).__init__()
  self.dis=nn.Sequential(
   nn.Conv2d(1,32,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2)),
 
   nn.Conv2d(32,64,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2))
  )
  self.fc=nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 def forward(self, x):
  x=self.dis(x)
  x=x.view(x.size(0),-1)
  x=self.fc(x)
  return x
 
class generator(nn.Module):
 def __init__(self,input_size,num_feature):
  super(generator,self).__init__()
  self.fc=nn.Linear(input_size,num_feature) #1*56*56
  self.br=nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen=nn.Sequential(
   nn.Conv2d(1,50,3,stride=1,padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50,25,3,stride=1,padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25,1,2,stride=2),
   nn.Tanh()
  )
 def forward(self, x):
  x=self.fc(x)
  x=x.view(x.size(0),1,56,56)
  x=self.br(x)
  x=self.gen(x)
  return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=110
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 119
 gepoch = 1
 for i in range(epoch):
  for (img, label) in trainloader:
   labels_onehot = np.zeros((num_img,10))
   labels_onehot[np.arange(num_img),label.numpy()]=1
#    img=img.view(num_img,-1)
#    img=np.concatenate((img.numpy(),labels_onehot))
#    img=torch.from_numpy(img)
   img=Variable(img).cuda()
   real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
   fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0
 
   #compute loss of real_img
   real_out=D(img) #真实图片送入判别器D输出0~1
   d_loss_real=criterion(real_out,real_label)#得到loss
   real_scores=real_out#真实图片放入判别器输出越接近1越好
 
   #compute loss of fake_img
   z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
   fake_img=G(z)#将向量放入生成网络G生成一张图片
   fake_out=D(fake_img)#判别器判断假的图片
   d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
   fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
   #D bp and optimize
   d_loss=d_loss_real+d_loss_fake
   d_optimizer.zero_grad() #判别器D的梯度归零
   d_loss.backward() #反向传播
   d_optimizer.step() #更新判别器D参数
 
   #生成器G的训练compute loss of fake_img
   for j in range(gepoch):
    z =torch.randn(num_img, 100) # 随机生成向量
    z=np.concatenate((z.numpy(),labels_onehot),axis=1)
    z=Variable(torch.from_numpy(z).float()).cuda()
    fake_img = G(z) # 将向量放入生成网络G生成一张图片
    output = D(fake_img) # 经过判别器得到结果
    g_loss = criterion(output, real_label)#得到假的图片与真实标签的loss
    #bp and optimize
    g_optimizer.zero_grad() #生成器G的梯度归零
    g_loss.backward() #反向传播
    g_optimizer.step()#更新生成器G参数
    temp=real_label
  if (i%10==0) and (i!=0):
   print(i)
   torch.save(G.state_dict(),r'./CGAN/Generator_cuda_%d.pkl'%i)
   torch.save(D.state_dict(), r'./CGAN/Discriminator_cuda_%d.pkl' % i)
   save_model(G, r'./CGAN/Generator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
   save_model(D, r'./CGAN/Discriminator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
  print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
     'D real: {:.6f}, D fake: {:.6f}'.format(
    i, epoch, d_loss.data[0], g_loss.data[0],
    real_scores.data.mean(), fake_scores.data.mean()))
  temp=temp.to('cpu')
  _,x=torch.max(temp,1)
  x=x.numpy()
  print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])
  showimg(fake_img,count)
  plt.show()
  count += 1

和基础GAN Pytorch使用MNIST数据集实现基础GAN 里面的卷积版网络比较起来,这里修改的主要是这几个地方:

生成网络的输入值增加了真实图片的类标签,生成网络的初始向量z_dimension之前用的是100维,由于MNIST有10类,Onehot以后一张图片的类标签是10维,所以将类标签放在后面z_dimension=100+10=110维;

训练生成器的时候,由于生成网络的输入向量z_dimension=110维,而且是100维随机向量和10维真实图片标签拼接,需要做相应的拼接操作;

z =torch.randn(num_img, 100) # 随机生成向量
z=np.concatenate((z.numpy(),labels_onehot),axis=1)
z=Variable(torch.from_numpy(z).float()).cuda()

由于计算Loss和生成网络的输入向量都需要用到真实图片的类标签,需要重新生成real_label,对label进行onehot。其中real_label就是真实图片的标签,当num_img=100时,real_label的维度是(100,10);

labels_onehot = np.zeros((num_img,10))
labels_onehot[np.arange(num_img),label.numpy()]=1
img=Variable(img).cuda()
real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0

real_label的维度是(100,10),计算Loss的时候也要有对应的维度,判别网络的输出也不再是标量,而是要修改为10维;

nn.Linear(1024, 10)

在输出图片的同时输出期望的类标签。

temp=temp.to('cpu')
_,x=torch.max(temp,1)#返回值有两个,第一个是按列的最大值,第二个是相应最大值的列标号
x=x.numpy()
print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])

epoch等于0、25、50、75、100时训练的结果:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

可以看到训练到后面图像反而变模糊可能是训练过拟合

用模型生成指定的数字:

在训练的过程中保存了训练好的模型,根据输出图片的清晰度,用清晰度较高的模型,使用随机向量和10维类标签来指定生成的数字。

import torch
import torch.nn as nn
import pickle
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
num_img=9
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator, self).__init__()
  self.dis = nn.Sequential(
   nn.Conv2d(1, 32, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2)),
 
   nn.Conv2d(32, 64, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2))
  )
  self.fc = nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 
 def forward(self, x):
  x = self.dis(x)
  x = x.view(x.size(0), -1)
  x = self.fc(x)
  return x
 
 
class generator(nn.Module):
 def __init__(self, input_size, num_feature):
  super(generator, self).__init__()
  self.fc = nn.Linear(input_size, num_feature) # 1*56*56
  self.br = nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen = nn.Sequential(
   nn.Conv2d(1, 50, 3, stride=1, padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50, 25, 3, stride=1, padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25, 1, 2, stride=2),
   nn.Tanh()
  )
 
 def forward(self, x):
  x = self.fc(x)
  x = x.view(x.size(0), 1, 56, 56)
  x = self.br(x)
  x = self.gen(x)
  return x
 
 
def show(images):
 images = images.detach().numpy()
 images = 255 * (0.5 * images + 0.5)
 images = images.astype(np.uint8)
 plt.figure(figsize=(4, 4))
 width = images.shape[2]
 gs = gridspec.GridSpec(1, num_img, wspace=0, hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 plt.tight_layout()
 # plt.savefig(r'drive/深度学习/DCGAN/images/%d.png' % count, bbox_inches='tight')
 return width
 
def show_all(images_all):
 x=images_all[0]
 for i in range(1,len(images_all),1):
  x=np.concatenate((x,images_all[i]),0)
 print(x.shape)
 x = 255 * (0.5 * x + 0.5)
 x = x.astype(np.uint8)
 plt.figure(figsize=(9, 10))
 width = x.shape[2]
 gs = gridspec.GridSpec(10, num_img, wspace=0, hspace=0)
 for i, img in enumerate(x):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 
 
 # 导入相应的模型
z_dimension = 110
D = discriminator()
G = generator(z_dimension, 3136) # 1*56*56
D.load_state_dict(torch.load(r'./CGAN/Discriminator.pkl'))
G.load_state_dict(torch.load(r'./CGAN/Generator.pkl'))
# 依次生成0到9
lis=[]
for i in range(10):
 z = torch.randn((num_img, 100)) # 随机生成向量
 x=np.zeros((num_img,10))
 x[:,i]=1
 z = np.concatenate((z.numpy(), x),1)
 z = torch.from_numpy(z).float()
 fake_img = G(z) # 将向量放入生成网络G生成一张图片
 lis.append(fake_img.detach().numpy())
 output = D(fake_img) # 经过判别器得到结果
 show(fake_img)
 plt.savefig('./CGAN/generator/%d.png' % i, bbox_inches='tight')
 
show_all(lis)
plt.savefig('./CGAN/generator/all.png', bbox_inches='tight')
plt.show()

生成的结果是:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python发送email的3种方法
Apr 28 Python
Python NumPy库安装使用笔记
May 18 Python
python在非root权限下的安装方法
Jan 23 Python
Python 12306抢火车票脚本 Python京东抢手机脚本
Feb 06 Python
Python中使用logging和traceback模块记录日志和跟踪异常
Apr 09 Python
详解python 爬取12306验证码
May 10 Python
PyQt5中多线程模块QThread使用方法的实现
Jan 31 Python
Python之关于类变量的两种赋值区别详解
Mar 12 Python
matplotlib运行时配置(Runtime Configuration,rc)参数rcParams解析
Jan 05 Python
python绘制箱型图
Apr 27 Python
Python基础之条件语句详解
Jun 16 Python
用Python爬取英雄联盟的皮肤详细示例
Dec 06 Python
pytorch实现mnist分类的示例讲解
Jan 10 #Python
pytorch 准备、训练和测试自己的图片数据的方法
Jan 10 #Python
pytorch GAN伪造手写体mnist数据集方式
Jan 10 #Python
MNIST数据集转化为二维图片的实现示例
Jan 10 #Python
pytorch:实现简单的GAN示例(MNIST数据集)
Jan 10 #Python
pytorch GAN生成对抗网络实例
Jan 10 #Python
解决pytorch报错:AssertionError: Invalid device id的问题
Jan 10 #Python
You might like
解析PHP可变函数的经典用法
2013/06/20 PHP
几道坑人的PHP面试题 试试看看你会不会也中招
2014/08/19 PHP
ThinkPHP中I(),U(),$this->post()等函数用法
2014/11/22 PHP
PHP中set error handler函数用法小结
2015/11/11 PHP
Yii2简单实现多语言配置的方法
2016/07/23 PHP
Laravel基础_关于view共享数据的示例讲解
2019/10/14 PHP
js 实现无缝滚动 兼容IE和FF
2009/07/15 Javascript
JS中的数组的sort方法使用示例
2014/01/22 Javascript
在myeclipse中如何加入jquery代码提示功能
2014/06/03 Javascript
javascript搜索框点击文字消失失焦时文本出现
2014/09/18 Javascript
浅谈轻量级js模板引擎simplite
2015/02/13 Javascript
Jquery Easyui分割按钮组件SplitButton使用详解(17)
2016/12/18 Javascript
MvcPager分页控件 适用于Bootstrap
2017/06/03 Javascript
微信小程序对接七牛云存储的方法
2017/07/30 Javascript
提高Node.js性能的应用技巧分享
2017/08/10 Javascript
Bootstrap实现可折叠分组侧边导航菜单
2018/03/07 Javascript
vue 多入口文件搭建 vue多页面搭建的实例讲解
2018/03/12 Javascript
微信小程序利用云函数获取手机号码
2019/12/17 Javascript
jQuery zTree如何改变指定节点文本样式
2020/10/16 jQuery
python基础教程之自定义函数介绍
2014/08/29 Python
Python 抓取动态网页内容方案详解
2014/12/25 Python
python获取文件扩展名的方法
2015/07/06 Python
Python中内置数据类型list,tuple,dict,set的区别和用法
2015/12/14 Python
Python图像处理之图像的缩放、旋转与翻转实现方法示例
2019/01/04 Python
简单了解Django应用app及分布式路由
2019/07/24 Python
在OpenCV里使用Camshift算法的实现
2019/11/22 Python
Nip + Fab官网:英国美容品牌
2019/08/26 全球购物
美国健康和保健平台:healtop
2020/07/02 全球购物
工作的心得体会
2013/12/31 职场文书
工作人员思想汇报
2014/01/09 职场文书
经营场所证明范本
2015/06/19 职场文书
催款函范文
2015/06/24 职场文书
python xlwt模块的使用解析
2021/04/13 Python
golang 比较浮点数的大小方式
2021/05/02 Golang
quickjs 封装 JavaScript 沙箱详情
2021/11/02 Javascript
vue elementUI表格控制对应列
2022/04/13 Vue.js