pytorch GAN伪造手写体mnist数据集方式


Posted in Python onJanuary 10, 2020

一,mnist数据集

pytorch GAN伪造手写体mnist数据集方式

形如上图的数字手写体就是mnist数据集。

二,GAN原理(生成对抗网络)

GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D)

一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的。D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值。因此G和D都在不停地更新权值。以下图为例:

pytorch GAN伪造手写体mnist数据集方式

在v1时的G只不过是 一堆噪声,见过数据集(real images)的D肯定能判断出G所生成的是假的。当然G也能知道D判断它是假的这个结果,因此G就会更新权值,到v2的时候,G就能生成更逼真的图片来让D判断,当然在v2时D也是会先看一次真图片,再去判断G所生成的图片。以此类推,不断循环就是GAN的思想。

三,训练代码

import argparse
import os
import numpy as np
import math
 
import torchvision.transforms as transforms
from torchvision.utils import save_image
 
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
 
import torch.nn as nn
import torch.nn.functional as F
import torch
 
os.makedirs("images", exist_ok=True)
 
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
 
img_shape = (opt.channels, opt.img_size, opt.img_size) # 确定图片输入的格式为(1,28,28),由于mnist数据集是灰度图所以通道为1
cuda = True if torch.cuda.is_available() else False
 
 
class Generator(nn.Module):
 def __init__(self):
  super(Generator, self).__init__()
 
  def block(in_feat, out_feat, normalize=True):
   layers = [nn.Linear(in_feat, out_feat)]
   if normalize:
    layers.append(nn.BatchNorm1d(out_feat, 0.8))
   layers.append(nn.LeakyReLU(0.2, inplace=True))
   return layers
 
  self.model = nn.Sequential(
   *block(opt.latent_dim, 128, normalize=False),
   *block(128, 256),
   *block(256, 512),
   *block(512, 1024),
   nn.Linear(1024, int(np.prod(img_shape))),
   nn.Tanh()
  )
 
 def forward(self, z):
  img = self.model(z)
  img = img.view(img.size(0), *img_shape)
  return img
 
 
class Discriminator(nn.Module):
 def __init__(self):
  super(Discriminator, self).__init__()
 
  self.model = nn.Sequential(
   nn.Linear(int(np.prod(img_shape)), 512),
   nn.LeakyReLU(0.2, inplace=True),
   nn.Linear(512, 256),
   nn.LeakyReLU(0.2, inplace=True),
   nn.Linear(256, 1),
   nn.Sigmoid(),
  )
 
 def forward(self, img):
  img_flat = img.view(img.size(0), -1)
  validity = self.model(img_flat)
  return validity
 
 
# Loss function
adversarial_loss = torch.nn.BCELoss()
 
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
 
if cuda:
 generator.cuda()
 discriminator.cuda()
 adversarial_loss.cuda()
 
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
 datasets.MNIST(
  "../../data/mnist",
  train=True,
  download=True,
  transform=transforms.Compose(
   [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
  ),
 ),
 batch_size=opt.batch_size,
 shuffle=True,
)
 
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
 
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
 
# ----------
# Training
# ----------
if __name__ == '__main__':
 for epoch in range(opt.n_epochs):
  for i, (imgs, _) in enumerate(dataloader):
   # print(imgs.shape)
   # Adversarial ground truths
   valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False) # 全1
   fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False) # 全0
   # Configure input
   real_imgs = Variable(imgs.type(Tensor))
 
   # -----------------
   # Train Generator
   # -----------------
 
   optimizer_G.zero_grad() # 清空G网络 上一个batch的梯度
 
   # Sample noise as generator input
   z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim)))) # 生成的噪音,均值为0方差为1维度为(64,100)的噪音
   # Generate a batch of images
   gen_imgs = generator(z)
   # Loss measures generator's ability to fool the discriminator
   g_loss = adversarial_loss(discriminator(gen_imgs), valid)
 
   g_loss.backward() # g_loss用于更新G网络的权值,g_loss于D网络的判断结果 有关
   optimizer_G.step()
 
   # ---------------------
   # Train Discriminator
   # ---------------------
 
   optimizer_D.zero_grad() # 清空D网络 上一个batch的梯度
   # Measure discriminator's ability to classify real from generated samples
   real_loss = adversarial_loss(discriminator(real_imgs), valid)
   fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
   d_loss = (real_loss + fake_loss) / 2
 
   d_loss.backward() # d_loss用于更新D网络的权值
   optimizer_D.step()
 
   print(
    "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
    % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
   )
 
   batches_done = epoch * len(dataloader) + i
   if batches_done % opt.sample_interval == 0:
    save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True) # 保存一个batchsize中的25张
   if (epoch+1) %2 ==0:
    print('save..')
    torch.save(generator,'g%d.pth' % epoch)
    torch.save(discriminator,'d%d.pth' % epoch)

运行结果:

一开始时,G生成的全是杂音:

pytorch GAN伪造手写体mnist数据集方式

然后逐渐呈现数字的雏形:

pytorch GAN伪造手写体mnist数据集方式

最后一次生成的结果:

pytorch GAN伪造手写体mnist数据集方式

四,测试代码:

导入最后保存生成器的模型:

from gan import Generator,Discriminator
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import numpy as np
from torchvision.utils import save_image
 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Tensor = torch.cuda.FloatTensor
g = torch.load('g199.pth') #导入生成器Generator模型
#d = torch.load('d.pth')
g = g.to(device)
#d = d.to(device)
 
z = Variable(Tensor(np.random.normal(0, 1, (64, 100)))) #输入的噪音
gen_imgs =g(z) #生产图片
save_image(gen_imgs.data[:25], "images.png" , nrow=5, normalize=True)

生成结果:

pytorch GAN伪造手写体mnist数据集方式

以上这篇pytorch GAN伪造手写体mnist数据集方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单学习Python多进程Multiprocessing
Aug 29 Python
Python竟能画这么漂亮的花,帅呆了(代码分享)
Nov 15 Python
Python搜索引擎实现原理和方法
Nov 27 Python
python cs架构实现简单文件传输
Mar 20 Python
Python实现Dijkstra算法
Oct 17 Python
Python中创建二维数组
Oct 17 Python
python flask框架实现传数据到js的方法分析
Jun 11 Python
python实现京东订单推送到测试环境,提供便利操作示例
Aug 09 Python
Python高级编程之消息队列(Queue)与进程池(Pool)实例详解
Nov 01 Python
python调用API接口实现登陆短信验证
May 10 Python
python搜索算法原理及实例讲解
Nov 18 Python
Python-OpenCV实现图像缺陷检测的实例
Jun 11 Python
MNIST数据集转化为二维图片的实现示例
Jan 10 #Python
pytorch:实现简单的GAN示例(MNIST数据集)
Jan 10 #Python
pytorch GAN生成对抗网络实例
Jan 10 #Python
解决pytorch报错:AssertionError: Invalid device id的问题
Jan 10 #Python
python3中关于excel追加写入格式被覆盖问题(实例代码)
Jan 10 #Python
mac使用python识别图形验证码功能
Jan 10 #Python
python列表推导和生成器表达式知识点总结
Jan 10 #Python
You might like
php date()日期时间函数详解
2010/05/16 PHP
JS中encodeURIComponent函数用php解码的代码
2012/03/01 PHP
PHP删除HTMl标签的三种解决方法
2013/06/30 PHP
php顺序查找和二分查找示例
2014/03/27 PHP
ThinkPHP3.2.2的插件控制器功能简述
2014/07/09 PHP
实现PHP+Mysql无限分类的方法汇总
2015/03/02 PHP
thinkPHP事务操作简单案例分析
2019/10/17 PHP
javascript function、指针及内置对象
2009/02/19 Javascript
JS实现将人民币金额转换为大写的示例代码
2014/02/13 Javascript
js创建对象的方式总结
2015/01/10 Javascript
nodejs 整合kindEditor实现图片上传
2015/02/03 NodeJs
jQuery多条件筛选如何实现
2015/11/04 Javascript
全面解析Bootstrap表单使用方法(表单按钮)
2015/11/24 Javascript
Javascript实现单例模式
2016/01/24 Javascript
关于Function中的bind()示例详解
2016/12/02 Javascript
Javascript中call,apply,bind方法的详解与总结
2016/12/12 Javascript
jQuery Pagination分页插件使用方法详解
2017/02/28 Javascript
基于vue的换肤功能的示例代码
2017/10/10 Javascript
vue 引入公共css文件的简单方法(推荐)
2018/01/20 Javascript
Angularjs中date过滤器失效的问题及解决方法
2018/07/06 Javascript
Vue项目安装插件并保存
2019/01/28 Javascript
原生js实现自定义滚动条组件
2021/01/20 Javascript
python实现决策树C4.5算法详解(在ID3基础上改进)
2017/05/31 Python
virtualenv实现多个版本Python共存
2017/08/21 Python
Python中scatter函数参数及用法详解
2017/11/08 Python
Python变量类型知识点总结
2019/02/18 Python
Myprotein丹麦官网:欧洲第一运动营养品牌
2019/04/15 全球购物
医科大学生的自我评价
2013/12/04 职场文书
质检部职责
2013/12/28 职场文书
18岁生日感言
2014/01/12 职场文书
教师反腐倡廉演讲稿
2014/09/03 职场文书
工作保证书怎么写
2015/02/28 职场文书
共青团员自我评价
2015/03/10 职场文书
小学课改工作总结
2015/08/13 职场文书
优质护理心得体会
2016/01/22 职场文书
正确的理解和使用Django信号(Signals)
2021/04/14 Python