Posted in Python onJanuary 10, 2020
我就废话不多说了,直接上代码吧!
# -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.data import DataLoader, sampler from torchvision.datasets import MNIST import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸 plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' def show_images(images): # 定义画图工具 images = np.reshape(images, [images.shape[0], -1]) sqrtn = int(np.ceil(np.sqrt(images.shape[0]))) sqrtimg = int(np.ceil(np.sqrt(images.shape[1]))) fig = plt.figure(figsize=(sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace=0.05, hspace=0.05) for i, img in enumerate(images): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape([sqrtimg,sqrtimg])) return def preprocess_img(x): x = tfs.ToTensor()(x) return (x - 0.5) / 0.5 def deprocess_img(x): return (x + 1.0) / 2.0 class ChunkSampler(sampler.Sampler): # 定义一个取样的函数 """Samples elements sequentially from some offset. Arguments: num_samples: # of desired datapoints start: offset where we should start selecting from """ def __init__(self, num_samples, start=0): self.num_samples = num_samples self.start = start def __iter__(self): return iter(range(self.start, self.start + self.num_samples)) def __len__(self): return self.num_samples NUM_TRAIN = 50000 NUM_VAL = 5000 NOISE_DIM = 96 batch_size = 128 train_set = MNIST('E:/data', train=True, transform=preprocess_img) train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0)) val_set = MNIST('E:/data', train=True, transform=preprocess_img) val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN)) imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果 show_images(imgs) #判别网络 def discriminator(): net = nn.Sequential( nn.Linear(784, 256), nn.LeakyReLU(0.2), nn.Linear(256, 256), nn.LeakyReLU(0.2), nn.Linear(256, 1) ) return net #生成网络 def generator(noise_dim=NOISE_DIM): net = nn.Sequential( nn.Linear(noise_dim, 1024), nn.ReLU(True), nn.Linear(1024, 1024), nn.ReLU(True), nn.Linear(1024, 784), nn.Tanh() ) return net #判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1 bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数 def discriminator_loss(logits_real, logits_fake): # 判别器的 loss size = logits_real.shape[0] true_labels = Variable(torch.ones(size, 1)).float() false_labels = Variable(torch.zeros(size, 1)).float() loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels) return loss def generator_loss(logits_fake): # 生成器的 loss size = logits_fake.shape[0] true_labels = Variable(torch.ones(size, 1)).float() loss = bce_loss(logits_fake, true_labels) return loss # 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999 def get_optimizer(net): optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999)) return optimizer def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, noise_size=96, num_epochs=10): iter_count = 0 for epoch in range(num_epochs): for x, _ in train_data: bs = x.shape[0] # 判别网络 real_data = Variable(x).view(bs, -1) # 真实数据 logits_real = D_net(real_data) # 判别网络得分 sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的数据 logits_fake = D_net(fake_images) # 判别网络得分 d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss D_optimizer.zero_grad() d_total_error.backward() D_optimizer.step() # 优化判别网络 # 生成网络 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的数据 gen_logits_fake = D_net(fake_images) g_error = generator_loss(gen_logits_fake) # 生成网络的 loss G_optimizer.zero_grad() g_error.backward() G_optimizer.step() # 优化生成网络 if (iter_count % show_every == 0): print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item())) imgs_numpy = deprocess_img(fake_images.data.cpu().numpy()) show_images(imgs_numpy[0:16]) plt.show() print() iter_count += 1 D = discriminator() G = generator() D_optim = get_optimizer(D) G_optim = get_optimizer(G) train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)
以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pytorch:实现简单的GAN示例(MNIST数据集)
- Author -
xckkcxxck声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@