matplotlib bar()实现多组数据并列柱状图通用简便创建方法


Posted in Python onFebruary 24, 2021

在使用柱状图时,经常遇到需要多组数据进行比较的情况。
绘制单个数据系列的柱形图比较简单,多组数据柱状图绘制的关键有三点:

  • 多次调用bar()函数即可在同一子图中绘制多组柱形图。
  • 为了防止柱子重叠,每个柱子在x轴上的位置需要依次递增,如果柱子紧挨,这个距离即柱子宽度。
  • 为了使刻度标签居中,需要调整x轴刻度标签的位置。

由上述可知,多组数据并列柱状图需要计算柱子x轴上的位置和x轴刻度标签。
因此,有两种实现方案:

  • x轴刻度标签位置固定,根据x轴刻度计算每个柱子的宽度
  • 每个柱子的宽度固定,计算x轴刻度标签位置,使之居中

下面使用第一种方法演示两组数据、三组数据、四组数据的并列柱状图。
使用方法一、方法二演示通用多组并列柱状图的创建方法。

两组数据、三组数据、四组数据的并列柱状图

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(13, 4))
# 构造x轴刻度标签、数据
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]

# 两组数据
plt.subplot(131)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width/2,x + width/2即每组数据在x轴上的位置
plt.bar(x - width/2, first, width, label='1')
plt.bar(x + width/2, second, width, label='2')
plt.ylabel('Scores')
plt.title('2 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 三组数据
plt.subplot(132)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width,x, x + width即每组数据在x轴上的位置
plt.bar(x - width, first, width, label='1')
plt.bar(x, second, width, label='2')
plt.bar(x + width, third, width, label='3')
plt.ylabel('Scores')
plt.title('3 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 四组数据
plt.subplot(133)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.2 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
plt.bar(x - 1.5*width, first, width, label='1')
plt.bar(x - 0.5*width, second, width, label='2')
plt.bar(x + 0.5*width, third, width, label='3')
plt.bar(x + 1.5*width, fourth, width, label='4')
plt.ylabel('Scores')
plt.title('4 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()

plt.show()

通用多组并列柱状图的简便创建方法

上面的示例比较简易,有一些问题没有考虑。为了便于重复使用,下面的通用方法可调整x轴标签刻度步长、每组柱子的总宽度、每组柱子之间的间隙、组与组之间的间隙。

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

方法一

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # ticks为x轴刻度
  ticks = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # baseline_x为每组柱子第一个柱子的基准x轴位置,随后的柱子依次递增bar_span即可
  baseline_x = ticks - (group_width - bar_span) / 2
  for index, y in enumerate(datas):
    plt.bar(baseline_x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # x轴刻度标签位置与x轴刻度一致
  plt.xticks(ticks, labels)
  plt.show()
  

create_multi_bars(label, data, bar_gap=0.1)

方法二

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # x为每组柱子x轴的基准位置
  x = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # 绘制柱子
  for index, y in enumerate(datas):
    plt.bar(x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # ticks为新x轴刻度标签位置,即每组柱子x轴上的中心位置
  ticks = x + (group_width - bar_span) / 2
  plt.xticks(ticks, labels)
  plt.show()

create_multi_bars(label, data[:3], bar_gap=0.1)
Python 相关文章推荐
压缩包密码破解示例分享(类似典破解)
Jan 17 Python
python中将字典转换成其json字符串
Jul 16 Python
python计算文本文件行数的方法
Jul 06 Python
python检查字符串是否是正确ISBN的方法
Jul 11 Python
Python 基础教程之包和类的用法
Feb 23 Python
Python实现字符串与数组相互转换功能示例
Sep 22 Python
Python+tkinter模拟“记住我”自动登录实例代码
Jan 16 Python
python中bs4.BeautifulSoup的基本用法
Jul 27 Python
python Opencv计算图像相似度过程解析
Dec 03 Python
浅谈TensorFlow之稀疏张量表示
Jun 30 Python
详解python使用金山词霸的翻译功能(调试工具断点的使用)
Jan 07 Python
Python中基础数据类型 set集合知识点总结
Aug 02 Python
pandas apply使用多列计算生成新的列实现示例
Feb 24 #Python
pandas map(),apply(),applymap()区别解析
Feb 24 #Python
Python的Tqdm模块实现进度条配置
Feb 24 #Python
详解pandas apply 并行处理的几种方法
Feb 24 #Python
python自动生成sql语句的脚本
Feb 24 #Python
Django与AJAX实现网页动态数据显示的示例代码
Feb 24 #Python
一文读懂python Scrapy爬虫框架
Feb 24 #Python
You might like
PHP编程最快明白(第一讲 软件环境和准备工作)
2010/10/25 PHP
PHP学习之字符串比较和查找
2011/04/17 PHP
thinkphp获取栏目和文章当前位置的方法
2014/10/29 PHP
php 时间time与日期date之间的使用详解及区别
2016/11/07 PHP
thinkPHP实现的省市区三级联动功能示例
2017/05/05 PHP
php连接MSsql server的五种方法总结
2018/03/04 PHP
CentOS7系统搭建LAMP及更新PHP版本操作详解
2020/03/26 PHP
用js来解决ajax读取页面乱码
2010/11/28 Javascript
基于Jquery 解决Ajax请求的页面 浏览器后退前进功能,页面刷新功能实效问题
2010/12/11 Javascript
理清apply(),call()的区别和关系
2011/08/14 Javascript
一个简单的Ext.XTemplate的实例代码
2012/03/18 Javascript
推荐一款jQuery插件模板
2015/01/09 Javascript
Jquery实现鼠标移动放大图片功能实例
2015/03/25 Javascript
jquery实现可横向和竖向展开的动态下滑菜单效果
2015/08/24 Javascript
用JS动态改变表单form里的action值属性的两种方法
2016/05/25 Javascript
Jquery删除css属性的简单方法
2016/12/04 Javascript
JQuery Ajax 异步操作之动态添加节点功能
2017/05/24 jQuery
Vue中的ref作用详解(实现DOM的联动操作)
2017/08/21 Javascript
vuex根据不同的用户权限展示不同的路由列表功能
2019/09/20 Javascript
关于javascript中的promise的用法和注意事项(推荐)
2021/01/15 Javascript
[49:11]完美世界DOTA2联赛PWL S3 INK ICE vs DLG 第二场 12.20
2020/12/23 DOTA
python结合API实现即时天气信息
2016/01/19 Python
Python学习入门之区块链详解
2017/07/25 Python
python统计字母、空格、数字等字符个数的实例
2018/06/29 Python
Python3之不使用第三方变量,实现交换两个变量的值
2019/06/26 Python
python使用flask与js进行前后台交互的例子
2019/07/19 Python
python的range和linspace使用详解
2019/11/27 Python
python识别验证码图片实例详解
2020/02/17 Python
基于keras中的回调函数用法说明
2020/06/17 Python
python 爬虫之selenium可视化爬虫的实现
2020/12/04 Python
WEB控件及HTML服务端控件能否调用客户端方法?如果能,请解释如何调用?
2015/08/25 面试题
学校节能减排倡议书
2014/05/16 职场文书
销售竞赛活动方案
2014/08/23 职场文书
公安四风对照检查材料思想汇报
2014/10/11 职场文书
Redis IP地址的绑定的实现
2021/05/08 Redis