matplotlib bar()实现多组数据并列柱状图通用简便创建方法


Posted in Python onFebruary 24, 2021

在使用柱状图时,经常遇到需要多组数据进行比较的情况。
绘制单个数据系列的柱形图比较简单,多组数据柱状图绘制的关键有三点:

  • 多次调用bar()函数即可在同一子图中绘制多组柱形图。
  • 为了防止柱子重叠,每个柱子在x轴上的位置需要依次递增,如果柱子紧挨,这个距离即柱子宽度。
  • 为了使刻度标签居中,需要调整x轴刻度标签的位置。

由上述可知,多组数据并列柱状图需要计算柱子x轴上的位置和x轴刻度标签。
因此,有两种实现方案:

  • x轴刻度标签位置固定,根据x轴刻度计算每个柱子的宽度
  • 每个柱子的宽度固定,计算x轴刻度标签位置,使之居中

下面使用第一种方法演示两组数据、三组数据、四组数据的并列柱状图。
使用方法一、方法二演示通用多组并列柱状图的创建方法。

两组数据、三组数据、四组数据的并列柱状图

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(13, 4))
# 构造x轴刻度标签、数据
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]

# 两组数据
plt.subplot(131)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width/2,x + width/2即每组数据在x轴上的位置
plt.bar(x - width/2, first, width, label='1')
plt.bar(x + width/2, second, width, label='2')
plt.ylabel('Scores')
plt.title('2 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 三组数据
plt.subplot(132)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width,x, x + width即每组数据在x轴上的位置
plt.bar(x - width, first, width, label='1')
plt.bar(x, second, width, label='2')
plt.bar(x + width, third, width, label='3')
plt.ylabel('Scores')
plt.title('3 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 四组数据
plt.subplot(133)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.2 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
plt.bar(x - 1.5*width, first, width, label='1')
plt.bar(x - 0.5*width, second, width, label='2')
plt.bar(x + 0.5*width, third, width, label='3')
plt.bar(x + 1.5*width, fourth, width, label='4')
plt.ylabel('Scores')
plt.title('4 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()

plt.show()

通用多组并列柱状图的简便创建方法

上面的示例比较简易,有一些问题没有考虑。为了便于重复使用,下面的通用方法可调整x轴标签刻度步长、每组柱子的总宽度、每组柱子之间的间隙、组与组之间的间隙。

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

方法一

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # ticks为x轴刻度
  ticks = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # baseline_x为每组柱子第一个柱子的基准x轴位置,随后的柱子依次递增bar_span即可
  baseline_x = ticks - (group_width - bar_span) / 2
  for index, y in enumerate(datas):
    plt.bar(baseline_x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # x轴刻度标签位置与x轴刻度一致
  plt.xticks(ticks, labels)
  plt.show()
  

create_multi_bars(label, data, bar_gap=0.1)

方法二

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # x为每组柱子x轴的基准位置
  x = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # 绘制柱子
  for index, y in enumerate(datas):
    plt.bar(x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # ticks为新x轴刻度标签位置,即每组柱子x轴上的中心位置
  ticks = x + (group_width - bar_span) / 2
  plt.xticks(ticks, labels)
  plt.show()

create_multi_bars(label, data[:3], bar_gap=0.1)
Python 相关文章推荐
跟老齐学Python之私有函数和专有方法
Oct 24 Python
Python psutil模块简单使用实例
Apr 28 Python
Python hashlib模块用法实例分析
Jun 12 Python
python实现多进程代码示例
Oct 31 Python
Python获取网段内ping通IP的方法
Jan 31 Python
python 读写文件包含多种编码格式的解决方式
Dec 20 Python
Python随机数函数代码实例解析
Feb 09 Python
python如何从键盘获取输入实例
Jun 18 Python
解决Python中导入自己写的类,被划红线,但不影响执行的问题
Jul 13 Python
Python Matplotlib绘图基础知识代码解析
Aug 31 Python
Django实现简单的分页功能
Feb 22 Python
只需要100行Python代码就可以实现的贪吃蛇小游戏
May 27 Python
pandas apply使用多列计算生成新的列实现示例
Feb 24 #Python
pandas map(),apply(),applymap()区别解析
Feb 24 #Python
Python的Tqdm模块实现进度条配置
Feb 24 #Python
详解pandas apply 并行处理的几种方法
Feb 24 #Python
python自动生成sql语句的脚本
Feb 24 #Python
Django与AJAX实现网页动态数据显示的示例代码
Feb 24 #Python
一文读懂python Scrapy爬虫框架
Feb 24 #Python
You might like
Memcache 在PHP中的使用技巧
2010/02/08 PHP
分享一下贝贝成长进度的php代码
2012/09/14 PHP
php自定义的格式化时间示例代码
2013/12/05 PHP
推荐25款php中非常有用的类库
2014/09/29 PHP
浅析PHP 中move_uploaded_file 上传中文文件名失败
2019/04/17 PHP
Ubuntu中搭建Nodejs开发环境过程分享
2014/06/01 NodeJs
js实现支持手机滑动切换的轮播图片效果实例
2015/04/29 Javascript
javascript无刷新评论实现方法
2015/05/13 Javascript
JS中处理时间之setUTCMinutes()方法的使用
2015/06/12 Javascript
jquery地址栏链接与a标签链接匹配之特效代码总结
2015/08/24 Javascript
浅谈Nodejs观察者模式
2015/10/13 NodeJs
浅谈String.valueOf()方法的使用
2016/06/06 Javascript
Vue.js系列之vue-router(上)(3)
2017/01/03 Javascript
详谈jQuery.load()和Jsp的include的区别
2017/04/12 jQuery
javascript基本常用排序算法解析
2017/09/27 Javascript
Vue引用第三方datepicker插件无法监听datepicker输入框的值的解决
2018/01/27 Javascript
改变vue请求过来的数据中的某一项值的方法(详解)
2018/03/08 Javascript
JS中移除非数字最多保留一位小数
2018/05/09 Javascript
解决layer.prompt无效的问题
2019/09/24 Javascript
Vue 技巧之控制父类的 slot
2020/02/24 Javascript
Python实现的Kmeans++算法实例
2014/04/26 Python
python实现的正则表达式功能入门教程【经典】
2017/06/05 Python
解决PyCharm中光标变粗的问题
2017/08/05 Python
Python算法之图的遍历
2017/11/16 Python
手把手教你python实现SVM算法
2017/12/27 Python
Python 实现淘宝秒杀的示例代码
2018/01/02 Python
python之pandas用法大全
2018/03/13 Python
python中join()方法介绍
2018/10/11 Python
基于打开pycharm有带图片md文件卡死问题的解决
2020/04/24 Python
Python中使用threading.Event协调线程的运行详解
2020/05/02 Python
CSS3 实现童年的纸飞机
2019/05/05 HTML / CSS
亚马逊西班牙购物网站:amazon西班牙
2017/03/06 全球购物
一道SQL面试题
2012/12/31 面试题
计算机系毕业生推荐信
2013/11/06 职场文书
python中requests库+xpath+lxml简单使用
2021/04/29 Python
Java常用工具类汇总 附示例代码
2021/06/26 Java/Android