matplotlib bar()实现多组数据并列柱状图通用简便创建方法


Posted in Python onFebruary 24, 2021

在使用柱状图时,经常遇到需要多组数据进行比较的情况。
绘制单个数据系列的柱形图比较简单,多组数据柱状图绘制的关键有三点:

  • 多次调用bar()函数即可在同一子图中绘制多组柱形图。
  • 为了防止柱子重叠,每个柱子在x轴上的位置需要依次递增,如果柱子紧挨,这个距离即柱子宽度。
  • 为了使刻度标签居中,需要调整x轴刻度标签的位置。

由上述可知,多组数据并列柱状图需要计算柱子x轴上的位置和x轴刻度标签。
因此,有两种实现方案:

  • x轴刻度标签位置固定,根据x轴刻度计算每个柱子的宽度
  • 每个柱子的宽度固定,计算x轴刻度标签位置,使之居中

下面使用第一种方法演示两组数据、三组数据、四组数据的并列柱状图。
使用方法一、方法二演示通用多组并列柱状图的创建方法。

两组数据、三组数据、四组数据的并列柱状图

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(13, 4))
# 构造x轴刻度标签、数据
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]

# 两组数据
plt.subplot(131)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width/2,x + width/2即每组数据在x轴上的位置
plt.bar(x - width/2, first, width, label='1')
plt.bar(x + width/2, second, width, label='2')
plt.ylabel('Scores')
plt.title('2 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 三组数据
plt.subplot(132)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.25 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
# x - width,x, x + width即每组数据在x轴上的位置
plt.bar(x - width, first, width, label='1')
plt.bar(x, second, width, label='2')
plt.bar(x + width, third, width, label='3')
plt.ylabel('Scores')
plt.title('3 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()
# 四组数据
plt.subplot(133)
x = np.arange(len(labels)) # x轴刻度标签位置
width = 0.2 # 柱子的宽度
# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中
plt.bar(x - 1.5*width, first, width, label='1')
plt.bar(x - 0.5*width, second, width, label='2')
plt.bar(x + 0.5*width, third, width, label='3')
plt.bar(x + 1.5*width, fourth, width, label='4')
plt.ylabel('Scores')
plt.title('4 datasets')
# x轴刻度标签位置不进行计算
plt.xticks(x, labels=labels)
plt.legend()

plt.show()

通用多组并列柱状图的简便创建方法

上面的示例比较简易,有一些问题没有考虑。为了便于重复使用,下面的通用方法可调整x轴标签刻度步长、每组柱子的总宽度、每组柱子之间的间隙、组与组之间的间隙。

matplotlib bar()实现多组数据并列柱状图通用简便创建方法

方法一

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # ticks为x轴刻度
  ticks = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # baseline_x为每组柱子第一个柱子的基准x轴位置,随后的柱子依次递增bar_span即可
  baseline_x = ticks - (group_width - bar_span) / 2
  for index, y in enumerate(datas):
    plt.bar(baseline_x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # x轴刻度标签位置与x轴刻度一致
  plt.xticks(ticks, labels)
  plt.show()
  

create_multi_bars(label, data, bar_gap=0.1)

方法二

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

label = ['G1', 'G2', 'G3', 'G4', 'G5']
first = [20, 34, 30, 35, 27]
second = [25, 32, 34, 20, 25]
third = [21, 31, 37, 21, 28]
fourth = [26, 31, 35, 27, 21]
data = [first, second, third, fourth]


def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):
  '''
  labels : x轴坐标标签序列
  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致
  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。
  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠
  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠
  '''
  # x为每组柱子x轴的基准位置
  x = np.arange(len(labels)) * tick_step
  # group_num为数据的组数,即每组柱子的柱子个数
  group_num = len(datas)
  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。
  group_width = tick_step - group_gap
  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和
  bar_span = group_width / group_num
  # bar_width为每个柱子的实际宽度
  bar_width = bar_span - bar_gap
  # 绘制柱子
  for index, y in enumerate(datas):
    plt.bar(x + index*bar_span, y, bar_width)
  plt.ylabel('Scores')
  plt.title('multi datasets')
  # ticks为新x轴刻度标签位置,即每组柱子x轴上的中心位置
  ticks = x + (group_width - bar_span) / 2
  plt.xticks(ticks, labels)
  plt.show()

create_multi_bars(label, data[:3], bar_gap=0.1)
Python 相关文章推荐
Python判断变量是否已经定义的方法
Aug 18 Python
基于Python实现的百度贴吧网络爬虫实例
Apr 17 Python
Python sys.argv用法实例
May 28 Python
Python网络爬虫项目:内容提取器的定义
Oct 25 Python
Python实现MySQL操作的方法小结【安装,连接,增删改查等】
Jul 12 Python
利用Python查看目录中的文件示例详解
Aug 28 Python
python交互式图形编程实例(一)
Nov 17 Python
Python实现学生成绩管理系统
Apr 05 Python
pandas 数据实现行间计算的方法
Jun 08 Python
在cmder下安装ipython以及环境的搭建
Oct 19 Python
使用Python正则表达式操作文本数据的方法
May 14 Python
解决Tkinter中button按钮未按却主动执行command函数的问题
May 23 Python
pandas apply使用多列计算生成新的列实现示例
Feb 24 #Python
pandas map(),apply(),applymap()区别解析
Feb 24 #Python
Python的Tqdm模块实现进度条配置
Feb 24 #Python
详解pandas apply 并行处理的几种方法
Feb 24 #Python
python自动生成sql语句的脚本
Feb 24 #Python
Django与AJAX实现网页动态数据显示的示例代码
Feb 24 #Python
一文读懂python Scrapy爬虫框架
Feb 24 #Python
You might like
php 高性能书写
2010/12/11 PHP
基于ThinkPHP实现批量删除
2015/12/18 PHP
php is_writable判断文件是否可写实例代码
2016/10/13 PHP
PHP + plupload.js实现多图上传并显示进度条加删除实例代码
2017/03/06 PHP
js获取元素到文档区域document的(横向、纵向)坐标的两种方法
2013/05/17 Javascript
JQuery each()嵌套使用小结
2014/04/18 Javascript
jQuery修改li下的样式以及li下的img的src的值的方法
2014/11/02 Javascript
js显示当前日期时间和星期几
2015/10/22 Javascript
jQuery Validate表单验证深入学习
2015/12/18 Javascript
基于JavaScript代码实现pc与手机之间的跳转
2015/12/23 Javascript
JavaScript jquery及AJAX小结
2016/01/24 Javascript
创建基于Bootstrap的下拉菜单的DropDownList的JQuery插件
2016/06/02 Javascript
关于session和cookie的简单理解
2016/06/08 Javascript
vue.js组件之间传递数据的方法
2017/07/10 Javascript
微信小程序 POST请求的实例详解
2017/09/29 Javascript
vue路由前进后退动画效果的实现代码
2018/12/10 Javascript
[01:08:44]NB vs VP 2018国际邀请赛小组赛BO2 第一场 8.18
2018/08/19 DOTA
跟老齐学Python之字典,你还记得吗?
2014/09/20 Python
Python选择排序、冒泡排序、合并排序代码实例
2015/04/10 Python
Python实现SSH远程登陆,并执行命令的方法(分享)
2017/05/08 Python
Python List cmp()知识点总结
2019/02/18 Python
python关闭占用端口方式
2019/12/17 Python
python ImageDraw类实现几何图形的绘制与文字的绘制
2020/02/26 Python
python利用Excel读取和存储测试数据完成接口自动化教程
2020/04/30 Python
Pytorch 解决自定义子Module .cuda() tensor失败的问题
2020/06/23 Python
pycharm全局搜索的具体步骤
2020/07/28 Python
DJI美国:消费类无人机领域的领导者
2018/04/27 全球购物
仓库管理制度
2014/01/21 职场文书
大学校运会广播稿
2014/02/03 职场文书
促销活动总结范文
2014/04/30 职场文书
室内设计专业毕业生求职信
2014/05/02 职场文书
反腐倡廉警示教育活动总结
2014/05/05 职场文书
教师爱岗敬业演讲稿
2014/05/05 职场文书
先进个人自荐书
2015/03/06 职场文书
导游词之四川熊猫基地
2020/01/13 职场文书