python 一维二维插值实例


Posted in Python onApril 22, 2020

一维插值

插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。

拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。

分段插值:虽然收敛,但光滑性较差。

样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。

在CODE上查看代码片派生到我的代码片

#!/usr/bin/env python 
# -*-coding:utf-8 -*- 
import numpy as np 
from scipy import interpolate 
import pylab as pl 
 
x=np.linspace(0,10,11) 
#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] 
y=np.sin(x) 
xnew=np.linspace(0,10,101) 
pl.plot(x,y,"ro") 
 
for kind in ["nearest","zero","slinear","quadratic","cubic"]:#插值方式 
 #"nearest","zero"为阶梯插值 
 #slinear 线性插值 
 #"quadratic","cubic" 为2阶、3阶B样条曲线插值 
 f=interpolate.interp1d(x,y,kind=kind) 
 # ‘slinear', ‘quadratic' and ‘cubic' refer to a spline interpolation of first, second or third order) 
 ynew=f(xnew) 
 pl.plot(xnew,ynew,label=str(kind)) 
pl.legend(loc="lower right") 
pl.show()

结果:

python 一维二维插值实例

二维插值

方法与一维数据插值类似,为二维样条插值。

在CODE上查看代码片派生到我的代码片

# -*- coding: utf-8 -*- 
""" 
演示二维插值。 
""" 
import numpy as np 
from scipy import interpolate 
import pylab as pl 
import matplotlib as mpl 
 
def func(x, y): 
 return (x+y)*np.exp(-5.0*(x**2 + y**2)) 
 
# X-Y轴分为15*15的网格 
y,x= np.mgrid[-1:1:15j, -1:1:15j] 
 
fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 
print len(fvals[0]) 
 
#三次样条二维插值 
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') 
 
# 计算100*100的网格上的插值 
xnew = np.linspace(-1,1,100)#x 
ynew = np.linspace(-1,1,100)#y 
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 
 
# 绘图 
# 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest' 
# 关闭imshow()内置的插值运算。 
pl.subplot(121) 
im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet 
#extent=[-1,1,-1,1]为x,y范围 favals为 
pl.colorbar(im1) 
 
pl.subplot(122) 
im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower") 
pl.colorbar(im2) 
 
pl.show()

python 一维二维插值实例

左图为原始数据,右图为二维插值结果图。

二维插值的三维展示方法

在CODE上查看代码片派生到我的代码片

# -*- coding: utf-8 -*- 
""" 
演示二维插值。 
""" 
# -*- coding: utf-8 -*- 
import numpy as np 
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib as mpl 
from scipy import interpolate 
import matplotlib.cm as cm 
import matplotlib.pyplot as plt 
 
def func(x, y): 
 return (x+y)*np.exp(-5.0*(x**2 + y**2)) 
 
# X-Y轴分为20*20的网格 
x = np.linspace(-1, 1, 20) 
y = np.linspace(-1,1,20) 
x, y = np.meshgrid(x, y)#20*20的网格数据 
 
fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 
 
fig = plt.figure(figsize=(9, 6)) 
#Draw sub-graph1 
ax=plt.subplot(1, 2, 1,projection = '3d') 
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True) 
ax.set_xlabel('x') 
ax.set_ylabel('y') 
ax.set_zlabel('f(x, y)') 
plt.colorbar(surf, shrink=0.5, aspect=5)#标注 
 
#二维插值 
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc为一个函数 
 
# 计算100*100的网格上的插值 
xnew = np.linspace(-1,1,100)#x 
ynew = np.linspace(-1,1,100)#y 
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 np.shape(fnew) is 100*100 
xnew, ynew = np.meshgrid(xnew, ynew) 
ax2=plt.subplot(1, 2, 2,projection = '3d') 
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True) 
ax2.set_xlabel('xnew') 
ax2.set_ylabel('ynew') 
ax2.set_zlabel('fnew(x, y)') 
plt.colorbar(surf2, shrink=0.5, aspect=5)#标注 
 
plt.show()

python 一维二维插值实例

左图的二维数据集的函数值由于样本较少,会显得粗糙。而右图对二维样本数据进行三次样条插值,拟合得到更多数据点的样本值,绘图后图像明显光滑多了。

补充知识:python中对Dataframe二维查表插值的实现方法

今天在计算风力发电机捕捉风能功率的时候,需要对叶片扫略面积内的风能做个功率效率折减,即Cp系数,Cp的定义如下,即实际利用的风能与输入风能的比例

python 一维二维插值实例

输入风能是空气密度与风速的函数,可以直接计算:

python 一维二维插值实例

那么实际得到的能力是Pin与Cp的乘积。

python 一维二维插值实例

Cp通常是一个二维表,横坐标是TSR(叶尖速与风速的比值),纵坐标是PITCH Angle(桨叶角)。风机的运行数据中是包含风速 ,转速以及桨叶角信息的,并且通过直接读入到DataFrame,那么就需要根据TSR与PA对Cp查表并且插值得到Cp。主要用到scipy.interpolate.interp2d创建插值函数并查表,另外Dataframe不能直接用插值函数,这里做了个for循环分行插值查表。

from scipy.interpolate import interp2d
df_rotormap = pd.read_csv('filepath',header = None) #读取Cp表
x = np.array(df_rotormap.iloc[:,0].dropna()) #Cp表的X坐标是TSR
y = np.array(df_rotormap.iloc[:,1]) #Cp表的Y坐标是pitch angle
z = np.array(df_rotormap.iloc[:,2:]) #Cp表的具体值,y行x列

rho = 1.225 #kg/m3
s = (141/2)**2*np.pi #m2
df_cal['TSR'] = df_cal['发电机转速(PDM1)']/148*141*np.pi/60/df_cal['风速']

func_new = interp2d(x,y,z,kind = 'linear') #定义二维表插值函数,选择线性插值

cp_list = []
for i in range(df_cal.shape[0]):
 cp = float(func_new(df_cal['TSR'][i],df_cal['1号桨叶角度'][i])) #输入X,Y坐标, 输出插值计算的Cp
 cp_list.append(cp)

df_cal['cp'] = cp_list #把Cp放回到Dataframe中去

df_cal['air_power'] = 0.5*rho*s*df_cal['风速']**3*df_cal['cp']

以上这篇python 一维二维插值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现带声音的摩斯码翻译实现方法
May 20 Python
Python的Flask框架应用调用Redis队列数据的方法
Jun 06 Python
python执行系统命令后获取返回值的几种方式集合
May 12 Python
Python3实现的爬虫爬取数据并存入mysql数据库操作示例
Jun 06 Python
对python生成业务报表的实例详解
Feb 03 Python
浅谈python3中input输入的使用
Aug 02 Python
python实现对变位词的判断方法
Apr 05 Python
spyder 在控制台(console)执行python文件,debug python程序方式
Apr 20 Python
Python super()函数使用及多重继承
May 06 Python
面向新手解析python Beautiful Soup基本用法
Jul 11 Python
python3.7调试的实例方法
Jul 21 Python
如何一键升级Python所有包
Nov 05 Python
Numpy一维线性插值函数的用法
Apr 22 #Python
python数据处理——对pandas进行数据变频或插值实例
Apr 22 #Python
利用4行Python代码监测每一行程序的运行时间和空间消耗
Apr 22 #Python
Jupyter Notebook折叠输出的内容实例
Apr 22 #Python
浅谈JupyterNotebook导出pdf解决中文的问题
Apr 22 #Python
django使用JWT保存用户登录信息
Apr 22 #Python
pandas中read_csv、rolling、expanding用法详解
Apr 21 #Python
You might like
php获取淘宝分类id示例
2014/01/16 PHP
php 运算符与表达式详细介绍
2016/11/30 PHP
PHP中Static(静态)关键字功能与用法实例分析
2019/04/05 PHP
用js实现上传图片前的预览(TX的面试题)
2007/08/14 Javascript
jsTree树控件(基于jQuery, 超强悍)[推荐]
2009/09/01 Javascript
javascript使用正则表达式检测IP地址
2014/12/03 Javascript
javascript字符串与数组转换汇总
2015/05/26 Javascript
JavaScript脚本判断蜘蛛来源的方法
2015/09/22 Javascript
跟我学习javascript的隐式强制转换
2015/11/16 Javascript
javascript伸缩型菜单实现代码
2015/11/16 Javascript
JavaScript地理位置信息API
2016/06/11 Javascript
JavaScript中的call和apply的用途以及区别
2017/01/11 Javascript
从零学习node.js之模块规范(一)
2017/02/21 Javascript
JavaScript实现焦点进入文本框内关闭输入法的核心代码
2017/09/20 Javascript
微信小程序实现换肤功能
2018/03/14 Javascript
原生JS实现的轮播图功能详解
2018/08/06 Javascript
30分钟精通React今年最劲爆的新特性——React Hooks
2019/03/11 Javascript
Layui数据表格之单元格编辑方式
2019/10/26 Javascript
Antd下拉选择,自动匹配功能的实现
2020/10/24 Javascript
[02:43]DOTA2亚洲邀请赛场馆攻略——带你走进东方体育中心
2018/03/19 DOTA
[56:20]LGD vs VP Supermajor 败者组决赛 BO3 第三场 6.10
2018/07/04 DOTA
Python语言的12个基础知识点小结
2014/07/10 Python
基于Python闭包及其作用域详解
2017/08/28 Python
Python Unittest根据不同测试环境跳过用例的方法
2018/12/16 Python
Python基于matplotlib画箱体图检验异常值操作示例【附xls数据文件下载】
2019/01/07 Python
HTML5中的强制下载属性download使用实例解析
2016/05/12 HTML / CSS
中学老师的自我评价
2013/11/07 职场文书
公司办公室岗位职责
2014/03/19 职场文书
2014年检验科工作总结
2014/11/22 职场文书
高考作弊检讨书1500字
2015/02/16 职场文书
酒店人事主管岗位职责
2015/04/11 职场文书
党员转正申请报告
2015/05/15 职场文书
现货白银电话营销话术
2015/05/29 职场文书
2016年八一建军节活动总结
2016/04/05 职场文书
一篇带你入门Java垃圾回收器
2021/06/16 Java/Android
索尼ICF-36收音机评测
2022/04/30 无线电