基于opencv的selenium滑动验证码的实现


Posted in Python onJuly 24, 2020

基于selenium进行动作链

由于最近很多人聊到滑动验证码怎么处理,所以决定自己动手试一下。
做一个东西前。我们首先要对这个东西的操作过程有一个大概的了解。

  • 打开验证码页面。
  • 鼠标放到拖动按钮上
  • 对拖动按钮进行拖动
  • 拖动到阴影快重合的位置。
  • 放开拖动按钮。
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains

artice = browser.find_element_by_class_name('geetest_slider_button') # 滑动按钮
action = ActionChains(browser)
action.click_and_hold(artice).perform() #按住按钮不放
action.reset_actions() 
action.pause(0.01).move_by_offset(step, 0).perform() #step 为滑动的水平距离
action.release(artice).perform() # 松开按钮

上面就是本方用到的有关于ActionChains的方法。其他方法这里不过多介绍,想了解更多的请转seleniun ActionChains 鼠标键盘操作

接下来到我本次要介绍的重点,滑动距离的介绍,也就是图片求阴影区域的位置。

这里我使用了opencv库,主要流程包括

  • 对图像二值化
  • 对二值化的图像进行高斯模糊
  • 用canny进行边缘检测
  • 然后HoughLinesP霍夫变换寻找直线
  • 对符合条件的直线进行处理寻找交点,进而求出我们要找的阴影快的距离
import cv2 as cv
import numpy as np
import math

# 寻找直线
def FindLines(image):
 image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # 二值化
 blurred = cv.GaussianBlur(image, (5, 5), 0) # 高斯模糊
 canny = cv.Canny(blurred, 200, 400) # canny边缘检测
 lines = cv.HoughLinesP(canny, 1, np.pi / 180, 20, minLineLength=15, maxLineGap=8) # 霍夫变换寻找直线
 return lines[:, 0, :] # 返回直线


# 这里对直线进行过滤
def FindResultLises(lines):
 resultLines = []
 for x1, y1, x2, y2 in lines:
  if (abs(y2 - y1) < 5 or abs(x2 - x1) < 5) and min(x1, x2) > 60: # 只要垂直于坐标轴的直线并且起始位置在60像素以上
   resultLines.append([x1, y1, x2, y2])
 return resultLines


# 判断点是否在直线上
def distAbs(point_exm, list_exm):
 x, y = point_exm
 x1, y1, x2, y2 = list_exm
 dist_1 = math.sqrt(abs((y2 - y1) + (x2 - x1) + 1)) # 直线的长度
 dist_2 = math.sqrt(abs((y1 - y) + (x1 - x) + 1)) + math.sqrt(abs((y2 - y) + (x2 - x) + 1)) # 点到两直线两端点距离和
 return abs(dist_2 - dist_1) 


# 交点函数 y = kx + b 求交点位置
def findPoint(line1, line2):
 poit_status = False
 x1, y1, x2, y2 = line1
 x3, y3, x4, y4 = line2
 x = y = 0

 if (x2 - x1) == 0: # 垂直x轴
  k1 = None
  b1 = 0
 else:
  k1 = 1.0 * (y2 - y1) / (x2 - x1)
  b1 = y1 * 1.0 - k1 * x1 * 1.0

 if (x4 - x3) == 0:
  k2 = None
  b2 = 0
 else:
  k2 = 1.0 * (y4 - y3) / (x4 - x3)
  b2 = y3 * 1.0 - k2 * x3 * 1.0

 if k1 is None:
  if not k2 is None:
   x = x1
   y = k2 * x1 + b2
   poit_status = True
 elif k2 is None:
  x = x3
  y = k1 * x3 + b1
  poit_status = True
 elif k1 != k2:
  x = (b2 - b1) * 1.0 / (k1 - k2)
  y = k1 * x * 1.0 + b1 * 1.0
  poit_status = True

 return poit_status, [x, y]


# 求交点
def linePoint(resultLines):
 for x1, y1, x2, y2 in resultLines:
  for x3, y3, x4, y4 in resultLines:
   point_is_exist, [x, y] = findPoint([x1, y1, x2, y2], [x3, y3, x4, y4]) # 两线是否有交点
   if point_is_exist:
    dist_len1 = distAbs([x, y], [x1, y1, x2, y2])
    dist_len2 = distAbs([x, y], [x3, y3, x4, y4])
    if dist_len1 < 5 and dist_len2 < 5: # 如果误差在5内我们认为点在直线上
     # 判断交点在行直线中是左端点还是右端点
     if abs(y2 - y1) < 5:
      # x1是行直线
      if abs(x1 - x) + abs(y1 - y) < 5: # 左端点
       return -1, [x, y]
      else:
       return 1, [x, y]
     else:
      # x2是行直线
      if abs(x3 - x) + abs(y3 - y) < 5:
       return -1, [x, y]
      else:
       return 1, [x, y]
 return 0, [0, 0]

if __name__ == '__main__':
 img = cv.imread(r'C:\Users\Administrator\Desktop\opencv\temImg.png')
 lines = FindLines(img)
 lines = FindResultLises(lines)
 L_or_R, point_x = linePoint(lines) # L_or_R 用于判断交点在行直线左边还是右边 后面拖动要用到
 xoffset = point_x[0]
 yoffset = point_x[1]
 cv.circle(img, (int(xoffset), int(yoffset)), 5, (0, 0, 255), 3)
 cv.imshow('circle', img)
 cv.waitKey(0)
 cv.destroyAllWindows()

基于opencv的selenium滑动验证码的实现

基于opencv的selenium滑动验证码的实现

效果图

当然也有操作不到的图片,各位有兴趣的可以尝试并且修改其中的参数

滑动验证码

在上面我们已经找到了边缘点,并且根据交点是在左边还是右边进行计算,找到我们要滑动的最后值

if L_or_R == 1:
 x_offset = xoffset - 20 # 20是阴影快一半的长度 可根据实际情况调整
else:
 x_offset = offset + 20

有了滑动距离,接下来就应该是滑动了
如果我们直接用 action.move_by_offset(x_offset,0).perform() 图片会图示被怪物吃了。那就是运动轨迹被检测到不是正常人的行为,因为正常人很难一拉就拉到对应的位置。

滑动轨迹算法

所以我们还要有一个模拟人的正常操作的拖动轨迹:下面是以先加速再减速的轨迹

import ramdom

# 通过加速减速模拟滑动轨迹
def moveTrack(xoffset):
 updistance = xoffset*4/5
 t = 0.2
 v = 0
 steps_list = []
 current_offset = 0
 while current_offset<xoffset:
  if current_offset<updistance:
   a = 2 + random.random() * 2
  else:
   a = -random.uniform(12,13)
  vo = v
  v = vo + a * t
  x = vo * t + 1 / 2 * a * (t * t)
  x = round(x, 2)
  current_offset += abs(x)
  steps_list.append(abs(x))
 # 上面的 sum(steps_list) 会比实际的大一点,所以再模拟一个往回拉的动作,补平多出来的距离
 disparty = sum(steps_list)-xoffset 
 last1 = round(-random.random() - disparty, 2)
 last2 = round(-disparty-last1, 2)
 steps_list.append(last1)
 steps_list.append(last2)
 
 return steps_list

有了轨迹 steps_list 我们就可以通过循环来拖动按钮。需要注意的一点是 每一次循环都要action.reset_actions() 不然他会把之前的距离也算进来,循环结束记得松开按钮

for step in steps_list:
 action.reset_actions()
 action.pause(0.01).move_by_offset(step, 0).perform()
action.release(artice).perform()

到此这篇关于基于opencv的selenium滑动验证码的实现的文章就介绍到这了,更多相关opencv selenium滑动验证码内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python时间戳与时间字符串互相转换实例代码
Nov 28 Python
Python Web框架Pylons中使用MongoDB的例子
Dec 03 Python
Python异常处理总结
Aug 15 Python
老生常谈Python序列化和反序列化
Jun 28 Python
python实现发送邮件功能代码
Dec 14 Python
python机器人行走步数问题的解决
Jan 29 Python
python 3.7.4 安装 opencv的教程
Oct 10 Python
Python 实现网课实时监控自动签到、打卡功能
Mar 12 Python
Python发起请求提示UnicodeEncodeError错误代码解决方法
Apr 21 Python
python对一个数向上取整的实例方法
Jun 18 Python
Pyecharts 中Geo函数常用参数的用法说明
Feb 01 Python
Python数据类型最全知识总结
May 31 Python
详解python中GPU版本的opencv常用方法介绍
Jul 24 #Python
python定义类的简单用法
Jul 24 #Python
Python爬虫抓取指定网页图片代码实例
Jul 24 #Python
详解Flask前后端分离项目案例
Jul 24 #Python
通过实例了解Python异常处理机制底层实现
Jul 23 #Python
Python异常处理机制结构实例解析
Jul 23 #Python
使用pygame实现垃圾分类小游戏功能(已获校级二等奖)
Jul 23 #Python
You might like
php Xdebug 调试扩展的安装与使用.
2010/03/13 PHP
创建配置文件 用PHP写出自己的BLOG系统 2
2010/04/12 PHP
php对数组排序的简单实例
2013/12/25 PHP
PHP树的深度编历生成迷宫及A*自动寻路算法实例分析
2015/03/10 PHP
php版微信自动登录并获取昵称的方法
2016/09/23 PHP
PHP弱类型的安全问题详细总结
2016/09/25 PHP
Jquery中获取iframe的代码
2011/01/11 Javascript
基于jquery跨浏览器显示的file上传控件
2011/10/24 Javascript
可自己添加html的伪弹出框实现代码
2013/09/08 Javascript
javascript使用smipleChart实现简单图表
2015/01/02 Javascript
Vue.js每天必学之Class与样式绑定
2016/09/05 Javascript
在Web项目中引入Jquery插件报错的完美解决方案(图解)
2016/09/19 Javascript
浅谈Angular的$q, defer, promise
2016/12/20 Javascript
js实现开启密码大写提示
2016/12/21 Javascript
深入理解vue-loader如何使用
2017/06/06 Javascript
JavaScript html5 canvas实现图片上画超链接
2017/10/20 Javascript
详解Vue路由钩子及应用场景(小结)
2017/11/07 Javascript
JavaScript的数据类型转换原则(干货)
2018/03/15 Javascript
Vue render深入开发讲解
2018/04/13 Javascript
值得收藏的八个常用的js正则表达式
2018/10/19 Javascript
javascript设计模式 ? 外观模式原理与用法实例分析
2020/04/15 Javascript
关于Vue中$refs的探索浅析
2020/11/05 Javascript
numpy使用技巧之数组过滤实例代码
2018/02/03 Python
详解如何设置Python环境变量?
2019/05/13 Python
python多线程共享变量的使用和效率方法
2019/07/16 Python
在Python中利用pickle保存变量的实例
2019/12/30 Python
Pytorch 数据加载与数据预处理方式
2019/12/31 Python
利用python绘制数据曲线图的实现
2020/04/09 Python
Python中常见的数制转换有哪些
2020/05/27 Python
Python下划线5种含义代码实例解析
2020/07/10 Python
工作失误检讨书范文大全
2014/01/13 职场文书
大学生2014全国两会学习心得体会
2014/03/10 职场文书
环境建设实施方案
2014/03/14 职场文书
汽车运用工程专业求职信
2014/06/18 职场文书
八项规定整改方案
2014/10/01 职场文书
Vue的列表之渲染,排序,过滤详解
2022/02/24 Vue.js