用TensorFlow实现多类支持向量机的示例代码


Posted in Python onApril 28, 2018

本文将详细展示一个多类支持向量机分类器训练iris数据集来分类三种花。

SVM算法最初是为二值分类问题设计的,但是也可以通过一些策略使得其能进行多类分类。主要的两种策略是:一对多(one versus all)方法;一对一(one versus one)方法。

一对一方法是在任意两类样本之间设计创建一个二值分类器,然后得票最多的类别即为该未知样本的预测类别。但是当类别(k类)很多的时候,就必须创建k!/(k-2)!2!个分类器,计算的代价还是相当大的。

另外一种实现多类分类器的方法是一对多,其为每类创建一个分类器。最后的预测类别是具有最大SVM间隔的类别。本文将实现该方法。

我们将加载iris数据集,使用高斯核函数的非线性多类SVM模型。iris数据集含有三个类别,山鸢尾、变色鸢尾和维吉尼亚鸢尾(I.setosa、I.virginica和I.versicolor),我们将为它们创建三个高斯核函数SVM来预测。

# Multi-class (Nonlinear) SVM Example
#----------------------------------
#
# This function wll illustrate how to
# implement the gaussian kernel with
# multiple classes on the iris dataset.
#
# Gaussian Kernel:
# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)
#
# X : (Sepal Length, Petal Width)
# Y: (I. setosa, I. virginica, I. versicolor) (3 classes)
#
# Basic idea: introduce an extra dimension to do
# one vs all classification.
#
# The prediction of a point will be the category with
# the largest margin or distance to boundary.

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# Load the data
# 加载iris数据集并为每类分离目标值。
# 因为我们想绘制结果图,所以只使用花萼长度和花瓣宽度两个特征。
# 为了便于绘图,也会分离x值和y值
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals1 = np.array([1 if y==0 else -1 for y in iris.target])
y_vals2 = np.array([1 if y==1 else -1 for y in iris.target])
y_vals3 = np.array([1 if y==2 else -1 for y in iris.target])
y_vals = np.array([y_vals1, y_vals2, y_vals3])
class1_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==0]
class1_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==0]
class2_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==1]
class2_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==1]
class3_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==2]
class3_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==2]

# Declare batch size
batch_size = 50

# Initialize placeholders
# 数据集的维度在变化,从单类目标分类到三类目标分类。
# 我们将利用矩阵传播和reshape技术一次性计算所有的三类SVM。
# 注意,由于一次性计算所有分类,
# y_target占位符的维度是[3,None],模型变量b初始化大小为[3,batch_size]
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[3, None], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[3,batch_size]))

# Gaussian (RBF) kernel 核函数只依赖x_data
gamma = tf.constant(-10.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1,1])
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Declare function to do reshape/batch multiplication
# 最大的变化是批量矩阵乘法。
# 最终的结果是三维矩阵,并且需要传播矩阵乘法。
# 所以数据矩阵和目标矩阵需要预处理,比如xT·x操作需额外增加一个维度。
# 这里创建一个函数来扩展矩阵维度,然后进行矩阵转置,
# 接着调用TensorFlow的tf.batch_matmul()函数
def reshape_matmul(mat):
  v1 = tf.expand_dims(mat, 1)
  v2 = tf.reshape(v1, [3, batch_size, 1])
  return(tf.matmul(v2, v1))

# Compute SVM Model 计算对偶损失函数
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = reshape_matmul(y_target)

second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)),[1,2])
loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term)))

# Gaussian (RBF) prediction kernel
# 现在创建预测核函数。
# 要当心reduce_sum()函数,这里我们并不想聚合三个SVM预测,
# 所以需要通过第二个参数告诉TensorFlow求和哪几个
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

# 实现预测核函数后,我们创建预测函数。
# 与二类不同的是,不再对模型输出进行sign()运算。
# 因为这里实现的是一对多方法,所以预测值是分类器有最大返回值的类别。
# 使用TensorFlow的内建函数argmax()来实现该功能
prediction_output = tf.matmul(tf.multiply(y_target,b), pred_kernel)
prediction = tf.arg_max(prediction_output-tf.expand_dims(tf.reduce_mean(prediction_output,1), 1), 0)
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target,0)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec = []
batch_accuracy = []
for i in range(100):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = x_vals[rand_index]
  rand_y = y_vals[:,rand_index]
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss)

  acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
                       y_target: rand_y,
                       prediction_grid:rand_x})
  batch_accuracy.append(acc_temp)

  if (i+1)%25==0:
    print('Step #' + str(i+1))
    print('Loss = ' + str(temp_loss))

# 创建数据点的预测网格,运行预测函数
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
           np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x,
                          y_target: rand_y,
                          prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')
plt.plot(class3_x, class3_y, 'gv', label='I. virginica')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

输出:

Instructions for updating:
Use `argmax` instead
Step #25
Loss = -313.391
Step #50
Loss = -650.891
Step #75
Loss = -988.39
Step #100
Loss = -1325.89

用TensorFlow实现多类支持向量机的示例代码 

山鸢尾花(I.Setosa)非线性高斯SVM模型的多分类(三类)结果,其中gamma值为10

用TensorFlow实现多类支持向量机的示例代码

用TensorFlow实现多类支持向量机的示例代码

重点是改变SVM算法一次性优化三类SVM模型。模型参数b通过增加一个维度来计算三个模型。我们可以看到,使用TensorFlow内建功能可以轻松扩展算法到多类的相似算法。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python对list列表结构中的值进行去重的方法总结
May 07 Python
简单谈谈Python的pycurl模块
Apr 07 Python
分享vim python缩进等一些配置
Jul 02 Python
Flask框架各种常见装饰器示例
Jul 17 Python
python mac下安装虚拟环境的图文教程
Apr 12 Python
Python 实现微信防撤回功能
Apr 29 Python
PyQt5 QTableView设置某一列不可编辑的方法
Jun 25 Python
Python解析json时提示“string indices must be integers”问题解决方法
Jul 31 Python
Keras在训练期间可视化训练误差和测试误差实例
Jun 16 Python
python利用pytesseract 实现本地识别图片文字
Dec 14 Python
python读取pdf格式文档的实现代码
Apr 01 Python
python 进阶学习之python装饰器小结
Sep 04 Python
详谈python在windows中的文件路径问题
Apr 28 #Python
TensorFlow实现随机训练和批量训练的方法
Apr 28 #Python
对python中的logger模块全面讲解
Apr 28 #Python
详解PyTorch批训练及优化器比较
Apr 28 #Python
Python使用matplotlib实现的图像读取、切割裁剪功能示例
Apr 28 #Python
浅谈python日志的配置文件路径问题
Apr 28 #Python
PyTorch上实现卷积神经网络CNN的方法
Apr 28 #Python
You might like
mac下安装nginx和php
2013/11/04 PHP
PHP添加图片水印、压缩、剪切的封装类
2015/08/17 PHP
PHP中的访问修饰符简单比较
2019/02/02 PHP
PHP架构及原理知识点详解
2019/12/22 PHP
js 禁用浏览器的后退功能的简单方法
2008/12/10 Javascript
ExtJS 简介 让你知道extjs是什么
2008/12/29 Javascript
javascript 去字符串空格终极版(支持utf8)
2009/11/14 Javascript
Javascript学习笔记之 对象篇(四) : for in 循环
2014/06/24 Javascript
jquery 页眉单行信息滚动显示实现思路及代码
2014/06/26 Javascript
JavaScript语言对Unicode字符集的支持详解
2014/12/30 Javascript
浅谈javascript构造函数与实例化对象
2015/06/22 Javascript
JS闭包、作用域链、垃圾回收、内存泄露相关知识小结
2016/05/16 Javascript
前端构建工具之gulp的语法教程
2017/06/12 Javascript
微信小程序组件 marquee实例详解
2017/06/23 Javascript
laravel5.4+vue+element简单搭建的示例代码
2017/08/29 Javascript
JQuery实现ajax请求的示例和注意事项
2018/12/10 jQuery
VUE 实现复制内容到剪贴板的两种方法
2019/04/24 Javascript
小程序如何获取多个formId实现详解
2019/09/20 Javascript
vue.js中ref及$refs的使用方法解析
2019/10/08 Javascript
NodeJS http模块用法示例【创建web服务器/客户端】
2019/11/05 NodeJs
vue input标签通用指令校验的实现
2019/11/05 Javascript
使用Python抓取模板之家的CSS模板
2015/03/16 Python
Python实现按逗号分隔列表的方法
2018/10/23 Python
python 获取一个值在某个区间的指定倍数的值方法
2018/11/12 Python
机器学习实战之knn算法pandas
2019/06/22 Python
vim自动补全插件YouCompleteMe(YCM)安装过程解析
2019/10/21 Python
css3绘制百度的小度熊
2018/10/29 HTML / CSS
哄娃神器4moms商店:美国婴童用品品牌
2019/03/07 全球购物
统计员岗位职责
2013/11/14 职场文书
销售文员岗位职责
2013/11/29 职场文书
个人对照检查材料
2014/02/12 职场文书
单位法人授权委托书范本
2014/10/09 职场文书
CSS 文字装饰 text-decoration & text-emphasis 详解
2021/04/06 HTML / CSS
python自动计算图像数据集的RGB均值
2021/06/18 Python
详解Python中下划线的5种含义
2021/07/15 Python
在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理
2022/04/14 Python