PyTorch上实现卷积神经网络CNN的方法


Posted in Python onApril 28, 2018

一、卷积神经网络

卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。

卷积神经网络CNN的要点就是局部连接(LocalConnection)、权值共享(WeightsSharing)和池化层(Pooling)中的降采样(Down-Sampling)。其中,局部连接和权值共享降低了参数量,使训练复杂度大大下降并减轻了过拟合。同时权值共享还赋予了卷积网络对平移的容忍性,池化层降采样则进一步降低了输出参数量并赋予模型对轻度形变的容忍性,提高了模型的泛化能力。可以把卷积层卷积操作理解为用少量参数在图像的多个位置上提取相似特征的过程。

二、代码实现

import torch 
import torch.nn as nn 
from torch.autograd import Variable 
import torch.utils.data as Data 
import torchvision 
import matplotlib.pyplot as plt 
 
torch.manual_seed(1) 
 
EPOCH = 1 
BATCH_SIZE = 50 
LR = 0.001 
DOWNLOAD_MNIST = True 
 
# 获取训练集dataset 
training_data = torchvision.datasets.MNIST( 
       root='./mnist/', # dataset存储路径 
       train=True, # True表示是train训练集,False表示test测试集 
       transform=torchvision.transforms.ToTensor(), # 将原数据规范化到(0,1)区间 
       download=DOWNLOAD_MNIST, 
       ) 
 
# 打印MNIST数据集的训练集及测试集的尺寸 
print(training_data.train_data.size()) 
print(training_data.train_labels.size()) 
# torch.Size([60000, 28, 28]) 
# torch.Size([60000]) 
 
plt.imshow(training_data.train_data[0].numpy(), cmap='gray') 
plt.title('%i' % training_data.train_labels[0]) 
plt.show() 
 
# 通过torchvision.datasets获取的dataset格式可直接可置于DataLoader 
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, 
                shuffle=True) 
 
# 获取测试集dataset 
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) 
# 取前2000个测试集样本 
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), 
         volatile=True).type(torch.FloatTensor)[:2000]/255 
# (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) 
test_y = test_data.test_labels[:2000] 
 
class CNN(nn.Module): 
  def __init__(self): 
    super(CNN, self).__init__() 
    self.conv1 = nn.Sequential( # (1,28,28) 
           nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, 
                stride=1, padding=2), # (16,28,28) 
    # 想要con2d卷积出来的图片尺寸没有变化, padding=(kernel_size-1)/2 
           nn.ReLU(), 
           nn.MaxPool2d(kernel_size=2) # (16,14,14) 
           ) 
    self.conv2 = nn.Sequential( # (16,14,14) 
           nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14) 
           nn.ReLU(), 
           nn.MaxPool2d(2) # (32,7,7) 
           ) 
    self.out = nn.Linear(32*7*7, 10) 
 
  def forward(self, x): 
    x = self.conv1(x) 
    x = self.conv2(x) 
    x = x.view(x.size(0), -1) # 将(batch,32,7,7)展平为(batch,32*7*7) 
    output = self.out(x) 
    return output 
 
cnn = CNN() 
print(cnn) 
''''' 
CNN ( 
 (conv1): Sequential ( 
  (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (conv2): Sequential ( 
  (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (out): Linear (1568 -> 10) 
) 
''' 
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) 
loss_function = nn.CrossEntropyLoss() 
 
for epoch in range(EPOCH): 
  for step, (x, y) in enumerate(train_loader): 
    b_x = Variable(x) 
    b_y = Variable(y) 
 
    output = cnn(b_x) 
    loss = loss_function(output, b_y) 
    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 
 
    if step % 100 == 0: 
      test_output = cnn(test_x) 
      pred_y = torch.max(test_output, 1)[1].data.squeeze() 
      accuracy = sum(pred_y == test_y) / test_y.size(0) 
      print('Epoch:', epoch, '|Step:', step, 
         '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy) 
 
test_output = cnn(test_x[:10]) 
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() 
print(pred_y, 'prediction number') 
print(test_y[:10].numpy(), 'real number') 
''''' 
Epoch: 0 |Step: 0 |train loss:2.3145 |test accuracy:0.1040 
Epoch: 0 |Step: 100 |train loss:0.5857 |test accuracy:0.8865 
Epoch: 0 |Step: 200 |train loss:0.0600 |test accuracy:0.9380 
Epoch: 0 |Step: 300 |train loss:0.0996 |test accuracy:0.9345 
Epoch: 0 |Step: 400 |train loss:0.0381 |test accuracy:0.9645 
Epoch: 0 |Step: 500 |train loss:0.0266 |test accuracy:0.9620 
Epoch: 0 |Step: 600 |train loss:0.0973 |test accuracy:0.9685 
Epoch: 0 |Step: 700 |train loss:0.0421 |test accuracy:0.9725 
Epoch: 0 |Step: 800 |train loss:0.0654 |test accuracy:0.9710 
Epoch: 0 |Step: 900 |train loss:0.1333 |test accuracy:0.9740 
Epoch: 0 |Step: 1000 |train loss:0.0289 |test accuracy:0.9720 
Epoch: 0 |Step: 1100 |train loss:0.0429 |test accuracy:0.9770 
[7 2 1 0 4 1 4 9 5 9] prediction number 
[7 2 1 0 4 1 4 9 5 9] real number 
'''

 三、分析解读

通过利用torchvision.datasets可以快速获取可以直接置于DataLoader中的dataset格式的数据,通过train参数控制是获取训练数据集还是测试数据集,也可以在获取的时候便直接转换成训练所需的数据格式。

卷积神经网络的搭建通过定义一个CNN类来实现,卷积层conv1,conv2及out层以类属性的形式定义,各层之间的衔接信息在forward中定义,定义的时候要留意各层的神经元数量。

CNN的网络结构如下:

CNN (

 (conv1): Sequential (

  (0): Conv2d(1, 16,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (conv2): Sequential (

  (0): Conv2d(16, 32,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (out): Linear (1568 ->10)

)

经过实验可见,在EPOCH=1的训练结果中,测试集准确率可达到97.7%。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python挑选文件夹里宽大于300图片的方法
Mar 05 Python
Windows下Python使用Pandas模块操作Excel文件的教程
May 31 Python
Python基于正则表达式实现检查文件内容的方法【文件检索】
Aug 30 Python
python使用mysql的两种使用方式
Mar 07 Python
解决Python的str强转int时遇到的问题
Apr 09 Python
PYTHON基础-时间日期处理小结
May 05 Python
python 获取键盘输入,同时有超时的功能示例
Nov 13 Python
Python requests模块实例用法
Feb 11 Python
PyTorch基本数据类型(一)
May 22 Python
Python实现投影法分割图像示例(二)
Jan 17 Python
Python Tkinter Entry和Text的添加与使用详解
Mar 04 Python
Pytest中skip skipif跳过用例详解
Jun 30 Python
python 日志增量抓取实现方法
Apr 28 #Python
Django 使用logging打印日志的实例
Apr 28 #Python
python实现log日志的示例代码
Apr 28 #Python
Python学习笔记之open()函数打开文件路径报错问题
Apr 28 #Python
Python之读取TXT文件的方法小结
Apr 27 #Python
如何利用python查找电脑文件
Apr 27 #Python
Python3 中把txt数据文件读入到矩阵中的方法
Apr 27 #Python
You might like
php面向对象的方法重载两种版本比较
2008/09/08 PHP
php 生成静态页面的办法与实现代码详细版
2010/02/15 PHP
PHP中feof()函数实例测试
2014/08/23 PHP
PHP上传图片时判断上传文件是否为可用图片的方法
2016/10/20 PHP
Extjs学习笔记之七 布局
2010/01/08 Javascript
javascript window.opener的用法分析
2010/04/07 Javascript
JQuery扩展插件Validate 1 基本使用方法并打包下载
2011/09/05 Javascript
利用NodeJS的子进程(child_process)调用系统命令的方法分享
2013/06/05 NodeJs
jquery根据属性和index来查找属性值并操作
2014/07/25 Javascript
JS控制表格实现一条光线流动分割行的方法
2015/03/09 Javascript
原生javascript实现匀速运动动画效果
2016/02/26 Javascript
js实现页面跳转的五种方法推荐
2016/03/10 Javascript
详解jQuery中的事件
2016/12/14 Javascript
在使用JSON格式处理数据时应该注意的问题小结
2017/05/20 Javascript
Vue 进阶之路(三)
2019/04/18 Javascript
vue-video-player视频播放器使用配置详解
2020/10/23 Javascript
python 自动提交和抓取网页
2009/07/13 Python
Python Socket传输文件示例
2017/01/16 Python
基于python进行桶排序与基数排序的总结
2018/05/29 Python
Python3实现对列表按元组指定列进行排序的方法分析
2018/12/22 Python
对python for 文件指定行读写操作详解
2018/12/29 Python
python实现猜数字游戏
2020/03/25 Python
python返回数组的索引实例
2019/11/28 Python
python标识符命名规范原理解析
2020/01/10 Python
在django中使用post方法时,需要增加csrftoken的例子
2020/03/13 Python
Python while true实现爬虫定时任务
2020/06/08 Python
详解如何解决使用JSON.stringify时遇到的循环引用问题
2021/03/23 Javascript
教育局长自荐信范文
2013/12/22 职场文书
勾股定理课后反思
2014/04/26 职场文书
灰雀教学反思
2014/04/28 职场文书
信仰心得体会
2014/09/05 职场文书
生产车间管理制度
2015/08/04 职场文书
安全生产标语口号
2015/12/26 职场文书
再次探讨go实现无限 buffer 的 channel方法
2021/06/13 Golang
mysql创建存储过程及函数详解
2021/12/04 MySQL
Java生成日期时间存入Mysql数据库的实现方法
2022/03/03 Java/Android