PyTorch上实现卷积神经网络CNN的方法


Posted in Python onApril 28, 2018

一、卷积神经网络

卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。

卷积神经网络CNN的要点就是局部连接(LocalConnection)、权值共享(WeightsSharing)和池化层(Pooling)中的降采样(Down-Sampling)。其中,局部连接和权值共享降低了参数量,使训练复杂度大大下降并减轻了过拟合。同时权值共享还赋予了卷积网络对平移的容忍性,池化层降采样则进一步降低了输出参数量并赋予模型对轻度形变的容忍性,提高了模型的泛化能力。可以把卷积层卷积操作理解为用少量参数在图像的多个位置上提取相似特征的过程。

二、代码实现

import torch 
import torch.nn as nn 
from torch.autograd import Variable 
import torch.utils.data as Data 
import torchvision 
import matplotlib.pyplot as plt 
 
torch.manual_seed(1) 
 
EPOCH = 1 
BATCH_SIZE = 50 
LR = 0.001 
DOWNLOAD_MNIST = True 
 
# 获取训练集dataset 
training_data = torchvision.datasets.MNIST( 
       root='./mnist/', # dataset存储路径 
       train=True, # True表示是train训练集,False表示test测试集 
       transform=torchvision.transforms.ToTensor(), # 将原数据规范化到(0,1)区间 
       download=DOWNLOAD_MNIST, 
       ) 
 
# 打印MNIST数据集的训练集及测试集的尺寸 
print(training_data.train_data.size()) 
print(training_data.train_labels.size()) 
# torch.Size([60000, 28, 28]) 
# torch.Size([60000]) 
 
plt.imshow(training_data.train_data[0].numpy(), cmap='gray') 
plt.title('%i' % training_data.train_labels[0]) 
plt.show() 
 
# 通过torchvision.datasets获取的dataset格式可直接可置于DataLoader 
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, 
                shuffle=True) 
 
# 获取测试集dataset 
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) 
# 取前2000个测试集样本 
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), 
         volatile=True).type(torch.FloatTensor)[:2000]/255 
# (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) 
test_y = test_data.test_labels[:2000] 
 
class CNN(nn.Module): 
  def __init__(self): 
    super(CNN, self).__init__() 
    self.conv1 = nn.Sequential( # (1,28,28) 
           nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, 
                stride=1, padding=2), # (16,28,28) 
    # 想要con2d卷积出来的图片尺寸没有变化, padding=(kernel_size-1)/2 
           nn.ReLU(), 
           nn.MaxPool2d(kernel_size=2) # (16,14,14) 
           ) 
    self.conv2 = nn.Sequential( # (16,14,14) 
           nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14) 
           nn.ReLU(), 
           nn.MaxPool2d(2) # (32,7,7) 
           ) 
    self.out = nn.Linear(32*7*7, 10) 
 
  def forward(self, x): 
    x = self.conv1(x) 
    x = self.conv2(x) 
    x = x.view(x.size(0), -1) # 将(batch,32,7,7)展平为(batch,32*7*7) 
    output = self.out(x) 
    return output 
 
cnn = CNN() 
print(cnn) 
''''' 
CNN ( 
 (conv1): Sequential ( 
  (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (conv2): Sequential ( 
  (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (out): Linear (1568 -> 10) 
) 
''' 
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) 
loss_function = nn.CrossEntropyLoss() 
 
for epoch in range(EPOCH): 
  for step, (x, y) in enumerate(train_loader): 
    b_x = Variable(x) 
    b_y = Variable(y) 
 
    output = cnn(b_x) 
    loss = loss_function(output, b_y) 
    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 
 
    if step % 100 == 0: 
      test_output = cnn(test_x) 
      pred_y = torch.max(test_output, 1)[1].data.squeeze() 
      accuracy = sum(pred_y == test_y) / test_y.size(0) 
      print('Epoch:', epoch, '|Step:', step, 
         '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy) 
 
test_output = cnn(test_x[:10]) 
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() 
print(pred_y, 'prediction number') 
print(test_y[:10].numpy(), 'real number') 
''''' 
Epoch: 0 |Step: 0 |train loss:2.3145 |test accuracy:0.1040 
Epoch: 0 |Step: 100 |train loss:0.5857 |test accuracy:0.8865 
Epoch: 0 |Step: 200 |train loss:0.0600 |test accuracy:0.9380 
Epoch: 0 |Step: 300 |train loss:0.0996 |test accuracy:0.9345 
Epoch: 0 |Step: 400 |train loss:0.0381 |test accuracy:0.9645 
Epoch: 0 |Step: 500 |train loss:0.0266 |test accuracy:0.9620 
Epoch: 0 |Step: 600 |train loss:0.0973 |test accuracy:0.9685 
Epoch: 0 |Step: 700 |train loss:0.0421 |test accuracy:0.9725 
Epoch: 0 |Step: 800 |train loss:0.0654 |test accuracy:0.9710 
Epoch: 0 |Step: 900 |train loss:0.1333 |test accuracy:0.9740 
Epoch: 0 |Step: 1000 |train loss:0.0289 |test accuracy:0.9720 
Epoch: 0 |Step: 1100 |train loss:0.0429 |test accuracy:0.9770 
[7 2 1 0 4 1 4 9 5 9] prediction number 
[7 2 1 0 4 1 4 9 5 9] real number 
'''

 三、分析解读

通过利用torchvision.datasets可以快速获取可以直接置于DataLoader中的dataset格式的数据,通过train参数控制是获取训练数据集还是测试数据集,也可以在获取的时候便直接转换成训练所需的数据格式。

卷积神经网络的搭建通过定义一个CNN类来实现,卷积层conv1,conv2及out层以类属性的形式定义,各层之间的衔接信息在forward中定义,定义的时候要留意各层的神经元数量。

CNN的网络结构如下:

CNN (

 (conv1): Sequential (

  (0): Conv2d(1, 16,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (conv2): Sequential (

  (0): Conv2d(16, 32,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (out): Linear (1568 ->10)

)

经过实验可见,在EPOCH=1的训练结果中,测试集准确率可达到97.7%。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python模拟百度登录实例详解
Jan 20 Python
python如何把嵌套列表转变成普通列表
Mar 20 Python
python线程池threadpool实现篇
Apr 27 Python
Python之inspect模块实现获取加载模块路径的方法
Oct 16 Python
python3安装speech语音模块的方法
Dec 24 Python
使用TensorFlow实现简单线性回归模型
Jul 19 Python
python将字符串list写入excel和txt的实例
Jul 20 Python
python使用celery实现异步任务执行的例子
Aug 28 Python
pygame实现打字游戏
Feb 19 Python
利用OpenCV和Python实现查找图片差异
Dec 19 Python
python def 定义函数,调用函数方式
Jun 02 Python
Python实现画图软件功能方法详解
Jul 28 Python
python 日志增量抓取实现方法
Apr 28 #Python
Django 使用logging打印日志的实例
Apr 28 #Python
python实现log日志的示例代码
Apr 28 #Python
Python学习笔记之open()函数打开文件路径报错问题
Apr 28 #Python
Python之读取TXT文件的方法小结
Apr 27 #Python
如何利用python查找电脑文件
Apr 27 #Python
Python3 中把txt数据文件读入到矩阵中的方法
Apr 27 #Python
You might like
php&java(一)
2006/10/09 PHP
php并发对MYSQL造成压力的解决方法
2013/02/21 PHP
php抓取并保存网站图片的实现代码
2015/10/28 PHP
利用phpexcel对数据库数据的导入excel(excel筛选)、导出excel
2017/04/27 PHP
php无限级分类实现评论及回复功能
2019/02/18 PHP
php根据命令行参数生成配置文件详解
2019/03/15 PHP
php如何实现数据库的备份和恢复
2020/11/30 PHP
Js 获取HTML DOM节点元素的方法小结
2009/04/24 Javascript
Js与Jq 获取页面元素值的方法和差异对比
2015/04/30 Javascript
JS验证邮件地址格式方法小结
2015/12/01 Javascript
详解React开发必不可少的eslint配置
2018/02/05 Javascript
使用JavaScript实现node.js中的path.join方法
2018/08/12 Javascript
利用JS动态生成隔行换色HTML表格的两种方法
2018/10/09 Javascript
Vue 中 template 有且只能一个 root的原因解析(源码分析)
2020/04/11 Javascript
React中Ref 的使用方法详解
2020/04/28 Javascript
vuecli项目构建SSR服务端渲染的实现
2020/10/30 Javascript
python创建和删除目录的方法
2015/04/29 Python
python解决Fedora解压zip时中文乱码的方法
2016/09/18 Python
python使用itchat实现手机控制电脑
2018/02/22 Python
python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)
2019/08/06 Python
基于python及pytorch中乘法的使用详解
2019/12/27 Python
Django 后台带有字典的列表数据与页面js交互实例
2020/04/03 Python
python 绘制国旗的示例
2020/09/27 Python
详解python3 GUI刷屏器(附源码)
2021/02/18 Python
CSS3结构性伪类选择器九种写法
2012/04/18 HTML / CSS
Agoda台湾官网:国内外订房2折起
2018/03/20 全球购物
HolidayLettings英国:预订最好的度假公寓、别墅和自助式住宿
2019/08/27 全球购物
如何获取某个日期是当月的最后一天
2013/12/05 面试题
春节联欢会主持词
2014/03/24 职场文书
歌唱比赛策划方案
2014/06/06 职场文书
借名购房协议书范本
2014/10/06 职场文书
党员教师学习党的群众路线教育实践活动心得体会
2014/10/31 职场文书
拉贝日记观后感
2015/06/05 职场文书
民事调解协议书
2016/03/21 职场文书
七年级作文之关于奶奶
2019/10/29 职场文书
《没有任何借口》读后感:完美的执行能力
2020/01/07 职场文书