详解PyTorch批训练及优化器比较


Posted in Python onApril 28, 2018

一、PyTorch批训练

1. 概述

PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。

import torch 
import torch.utils.data as Data 
 
torch.manual_seed(1) # 设定随机数种子 
 
BATCH_SIZE = 5 
 
x = torch.linspace(1, 10, 10) 
y = torch.linspace(0.5, 5, 10) 
 
# 将数据转换为torch的dataset格式 
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y) 
 
# 将torch_dataset置入Dataloader中 
loader = Data.DataLoader( 
  dataset=torch_dataset, 
  batch_size=BATCH_SIZE, # 批大小 
  # 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少 
  shuffle=True, # 是否随机打乱顺序 
  num_workers=2, # 多线程读取数据的线程数 
  ) 
 
for epoch in range(3): 
  for step, (batch_x, batch_y) in enumerate(loader): 
    print('Epoch:', epoch, '|Step:', step, '|batch_x:', 
       batch_x.numpy(), '|batch_y', batch_y.numpy()) 
''''' 
shuffle=True 
Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3.  3.5 1.  1.5 0.5] 
Epoch: 0 |Step: 1 |batch_x: [ 9. 10.  4.  8.  5.] |batch_y [ 4.5 5.  2.  4.  2.5] 
Epoch: 1 |Step: 0 |batch_x: [ 3.  4.  2.  9. 10.] |batch_y [ 1.5 2.  1.  4.5 5. ] 
Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4.  2.5 3. ] 
Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1.  3.  3.5] 
Epoch: 2 |Step: 1 |batch_x: [ 10.  4.  8.  1.  5.] |batch_y [ 5.  2.  4.  0.5 2.5] 
 
shuffle=False 
Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5] 
Epoch: 0 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ] 
Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5] 
Epoch: 1 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ] 
Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5] 
Epoch: 2 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ] 
'''

2. TensorDataset

classtorch.utils.data.TensorDataset(data_tensor, target_tensor)

TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor。

3. DataLoader

classtorch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,num_workers=0, collate_fn=<function default_collate>, pin_memory=False,drop_last=False)

dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。

二、PyTorch的Optimizer优化器

本实验中,首先构造一组数据集,转换格式并置于DataLoader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。

代码实现:

import torch 
import torch.utils.data as Data 
import torch.nn.functional as F 
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
torch.manual_seed(1) # 设定随机数种子 
 
# 定义超参数 
LR = 0.01 # 学习率 
BATCH_SIZE = 32 # 批大小 
EPOCH = 12 # 迭代次数 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) 
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) 
 
#plt.scatter(x.numpy(), y.numpy()) 
#plt.show() 
 
# 将数据转换为torch的dataset格式 
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y) 
# 将torch_dataset置入Dataloader中 
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, 
             shuffle=True, num_workers=2) 
 
class Net(torch.nn.Module): 
  def __init__(self): 
    super(Net, self).__init__() 
    self.hidden = torch.nn.Linear(1, 20) 
    self.predict = torch.nn.Linear(20, 1) 
 
  def forward(self, x): 
    x = F.relu(self.hidden(x)) 
    x = self.predict(x) 
    return x 
 
# 为每个优化器创建一个Net 
net_SGD = Net() 
net_Momentum = Net() 
net_RMSprop = Net() 
net_Adam = Net()  
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] 
 
# 初始化优化器 
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) 
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) 
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) 
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) 
 
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] 
 
# 定义损失函数 
loss_function = torch.nn.MSELoss() 
losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值 
 
for epoch in range(EPOCH): 
  print('Epoch:', epoch + 1, 'Training...') 
  for step, (batch_x, batch_y) in enumerate(loader): 
    b_x = Variable(batch_x) 
    b_y = Variable(batch_y) 
 
    for net, opt, l_his in zip(nets, optimizers, losses_history): 
      output = net(b_x) 
      loss = loss_function(output, b_y) 
      opt.zero_grad() 
      loss.backward() 
      opt.step() 
      l_his.append(loss.data[0]) 
 
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] 
 
for i, l_his in enumerate(losses_history): 
  plt.plot(l_his, label=labels[i]) 
plt.legend(loc='best') 
plt.xlabel('Steps') 
plt.ylabel('Loss') 
plt.ylim((0, 0.2)) 
plt.show()

实验结果:

详解PyTorch批训练及优化器比较

由实验结果可见,SGD的优化效果是最差的,速度很慢;作为SGD的改良版本,Momentum表现就好许多;相比RMSprop和Adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。

三、其他补充

1. Python的zip函数

zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。

x = [1, 2, 3] 
y = [4, 5, 6] 
z = [7, 8, 9] 
xyz = zip(x, y, z) 
print xyz 
[(1, 4, 7), (2, 5, 8), (3, 6, 9)] 
 
x = [1, 2, 3] 
x = zip(x) 
print x 
[(1,), (2,), (3,)] 
 
x = [1, 2, 3] 
y = [4, 5, 6, 7] 
xy = zip(x, y) 
print xy 
[(1, 4), (2, 5), (3, 6)]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用scrapy解析js示例
Jan 23 Python
详解Python中的type()方法的使用
May 21 Python
在Pycharm中对代码进行注释和缩进的方法详解
Jan 20 Python
浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器
Mar 11 Python
Python Flask框架模板操作实例分析
May 03 Python
python dataframe NaN处理方式
Dec 26 Python
Selenium启动Chrome时配置选项详解
Mar 18 Python
PyQt5 如何让界面和逻辑分离的方法
Mar 24 Python
解决import tensorflow as tf 出错的原因
Apr 16 Python
Python转换字典成为对象,可以用&quot;.&quot;方式访问对象属性实例
May 11 Python
Python捕获异常堆栈信息的几种方法(小结)
May 18 Python
python中sklearn的pipeline模块实例详解
May 21 Python
Python使用matplotlib实现的图像读取、切割裁剪功能示例
Apr 28 #Python
浅谈python日志的配置文件路径问题
Apr 28 #Python
PyTorch上实现卷积神经网络CNN的方法
Apr 28 #Python
python 日志增量抓取实现方法
Apr 28 #Python
Django 使用logging打印日志的实例
Apr 28 #Python
python实现log日志的示例代码
Apr 28 #Python
Python学习笔记之open()函数打开文件路径报错问题
Apr 28 #Python
You might like
分享下页面关键字抓取www.icbase.com站点代码(带asp.net参数的)
2014/01/30 PHP
php可变长参数处理函数详解
2017/02/22 PHP
PHP实现redis限制单ip、单用户的访问次数功能示例
2018/06/16 PHP
Laravel框架Request、Response及Session操作示例
2019/05/06 PHP
用jquery实现下拉菜单效果的代码
2010/07/25 Javascript
如何用JavaScript动态呼叫函数(两种方式)
2013/05/03 Javascript
javascript学习笔记(三)BOM和DOM详解
2014/09/30 Javascript
js制作带有遮罩弹出层实现登录注册表单特效代码分享
2015/09/05 Javascript
js检测iframe是否加载完成的方法
2015/11/26 Javascript
jquery获取文档高度和窗口高度汇总
2016/01/25 Javascript
使用JavaScript解决网页图片拉伸问题(推荐)
2016/11/25 Javascript
Node.JS利用PhantomJs抓取网页入门教程
2017/05/19 Javascript
Vue.js 中取得后台原生HTML字符串 原样显示问题的解决方法
2018/06/10 Javascript
微信小程序保存多张图片的实现方法
2019/03/05 Javascript
vue和小程序项目中使用iconfont的方法
2020/05/19 Javascript
python使用any判断一个对象是否为空的方法
2014/11/19 Python
Python中在for循环中嵌套使用if和else语句的技巧
2016/06/20 Python
python利用paramiko连接远程服务器执行命令的方法
2017/10/16 Python
Python将多个excel表格合并为一个表格
2021/02/22 Python
Python 反转字符串(reverse)的方法小结
2018/02/20 Python
利用Django-environ如何区分不同环境
2018/08/26 Python
Python访问MongoDB,并且转换成Dataframe的方法
2018/10/15 Python
python应用文件读取与登录注册功能
2019/09/23 Python
python生成器/yield协程/gevent写简单的图片下载器功能示例
2019/10/28 Python
Pycharm使用远程linux服务器conda/python环境在本地运行的方法(图解))
2019/12/09 Python
结合CSS3的布局新特征谈谈常见布局方法
2016/01/22 HTML / CSS
使用CSS3 制作一个material-design 风格登录界面实例
2016/12/12 HTML / CSS
印度最大的酒店品牌网络:OYO Rooms
2016/07/24 全球购物
澳大利亚玩具剧场:Toy Playhouse
2019/03/03 全球购物
毕业生自我鉴定
2013/11/05 职场文书
甲方资料员岗位职责
2013/12/13 职场文书
优秀学生评语大全
2014/04/25 职场文书
超市督导岗位职责
2015/04/10 职场文书
thinkphp 获取控制器及控制器方法
2021/04/16 PHP
python四种出行路线规划的实现
2021/06/23 Python
python blinker 信号库
2022/05/04 Python