keras实现VGG16 CIFAR10数据集方式


Posted in Python onJuly 07, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import optimizers
import numpy as np
from keras.layers.core import Lambda
from keras import backend as K
from keras.optimizers import SGD
from keras import regularizers
 
#import data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
weight_decay = 0.0005
nb_epoch=100
batch_size=32
 
#layer1 32*32*3
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=(32,32,3),kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
#layer2 32*32*64
model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer3 16*16*64
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer4 16*16*128
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer5 8*8*128
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer6 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer7 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer8 4*4*256
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer9 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer10 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer11 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer12 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer13 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
#layer14 1*1*512
model.add(Flatten())
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer15 512
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer16 512
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
# 10
 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy'])
 
model.fit(x_train,y_train,epochs=nb_epoch, batch_size=batch_size,
       validation_split=0.1, verbose=1)

补充知识:pytorch一步一步在VGG16上训练自己的数据集

准备数据集及加载,ImageFolder

在很多机器学习或者深度学习的任务中,往往我们要提供自己的图片。也就是说我们的数据集不是预先处理好的,像mnist,cifar10等它已经给你处理好了,更多的是原始的图片。比如我们以猫狗分类为例。在data文件下,有两个分别为train和val的文件夹。然后train下是cat和dog两个文件夹,里面存的是自己的图片数据,val文件夹同train。这样我们的数据集就准备好了。

keras实现VGG16 CIFAR10数据集方式

ImageFolder能够以目录名作为标签来对数据集做划分,下面是pytorch中文文档中关于ImageFolder的介绍:

keras实现VGG16 CIFAR10数据集方式

#对训练集做一个变换
train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224), #对图片尺寸做一个缩放切割
  transforms.RandomHorizontalFlip(), #水平翻转
  transforms.ToTensor(),   #转化为张量
  transforms.Normalize((.5, .5, .5), (.5, .5, .5)) #进行归一化
])
#对测试集做变换
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = "G:/data/train"      #训练集路径
#定义数据集
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = "G:/datat/val" 
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

迁移学习以VGG16为例

下面是迁移代码的实现:

class VGGNet(nn.Module):
  def __init__(self, num_classes=2):  #num_classes,此处为 二分类值为2
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)  #从预训练模型加载VGG16网络参数
    net.classifier = nn.Sequential() #将分类层置空,下面将改变我们的分类层
    self.features = net #保留VGG16的特征层
    self.classifier = nn.Sequential(  #定义自己的分类层
        nn.Linear(512 * 7 * 7, 512), #512 * 7 * 7不能改变 ,由VGG16网络决定的,第二个参数为神经元个数可以微调
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

完整代码如下

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
from torchvision import models

batch_size = 16
learning_rate = 0.0002
epoch = 10

train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = './VGGDataSet/train'
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = './VGGDataSet/val'
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

class VGGNet(nn.Module):
  def __init__(self, num_classes=3):
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)
    net.classifier = nn.Sequential()
    self.features = net
    self.classifier = nn.Sequential(
        nn.Linear(512 * 7 * 7, 512),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

#--------------------训练过程---------------------------------
model = VGGNet()
if torch.cuda.is_available():
  model.cuda()
params = [{'params': md.parameters()} for md in model.children()
     if md in [model.classifier]]
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
loss_func = nn.CrossEntropyLoss()

Loss_list = []
Accuracy_list = []

for epoch in range(100):
  print('epoch {}'.format(epoch + 1))
  # training-----------------------------
  train_loss = 0.
  train_acc = 0.
  for batch_x, batch_y in train_dataloader:
    batch_x, batch_y = Variable(batch_x).cuda(), Variable(batch_y).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    train_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    train_correct = (pred == batch_y).sum()
    train_acc += train_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
  print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
    train_datasets)), train_acc / (len(train_datasets))))

  # evaluation--------------------------------
  model.eval()
  eval_loss = 0.
  eval_acc = 0.
  for batch_x, batch_y in val_dataloader:
    batch_x, batch_y = Variable(batch_x, volatile=True).cuda(), Variable(batch_y, volatile=True).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    eval_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    num_correct = (pred == batch_y).sum()
    eval_acc += num_correct.data[0]
  print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
    val_datasets)), eval_acc / (len(val_datasets))))
    
	Loss_list.append(eval_loss / (len(val_datasets)))
  Accuracy_list.append(100 * eval_acc / (len(val_datasets)))

x1 = range(0, 100)
x2 = range(0, 100)
y1 = Accuracy_list
y2 = Loss_list
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'o-')
plt.title('Test accuracy vs. epoches')
plt.ylabel('Test accuracy')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, '.-')
plt.xlabel('Test loss vs. epoches')
plt.ylabel('Test loss')
plt.show()
# plt.savefig("accuracy_loss.jpg")

以上这篇keras实现VGG16 CIFAR10数据集方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 元组(Tuple)操作详解
Mar 11 Python
python分析nignx访问日志脚本分享
Feb 26 Python
pygame 精灵的行走及二段跳的实现方法(必看篇)
Jul 10 Python
浅谈Python在pycharm中的调试(debug)
Nov 29 Python
Python统计一个字符串中每个字符出现了多少次的方法【字符串转换为列表再统计】
May 05 Python
Python流行ORM框架sqlalchemy安装与使用教程
Jun 04 Python
selenium获取当前页面的url、源码、title的方法
Jun 12 Python
Python使用pyautocad+openpyxl处理cad文件示例
Jul 11 Python
Python操作excel的方法总结(xlrd、xlwt、openpyxl)
Sep 02 Python
Python partial函数原理及用法解析
Dec 11 Python
python 邮件检测工具mmpi的使用
Jan 04 Python
浅谈Selenium+Webdriver 常用的元素定位方式
Jan 13 Python
使用darknet框架的imagenet数据分类预训练操作
Jul 07 #Python
Python调用C语言程序方法解析
Jul 07 #Python
keras实现VGG16方式(预测一张图片)
Jul 07 #Python
通过实例解析Python RPC实现原理及方法
Jul 07 #Python
Keras预训练的ImageNet模型实现分类操作
Jul 07 #Python
Scrapy模拟登录赶集网的实现代码
Jul 07 #Python
scrapy框架携带cookie访问淘宝购物车功能的实现代码
Jul 07 #Python
You might like
通达OA公共代码 php常用检测函数
2011/12/14 PHP
php检测数组长度函数sizeof与count用法
2014/11/17 PHP
php发送与接收流文件的方法
2015/02/11 PHP
PHP获取页面执行时间的方法(推荐)
2016/12/10 PHP
Jquery 的扩展方法总结
2011/10/01 Javascript
js获得网页背景色和字体色的方法
2014/03/21 Javascript
javascript事件冒泡详解和捕获、阻止方法
2014/04/12 Javascript
JavaScript 动态加载脚本和样式的方法
2015/04/13 Javascript
JavaScript中使用Math.floor()方法对数字取整
2015/06/15 Javascript
在JavaScript中call()与apply()区别
2016/01/22 Javascript
javascript原型继承工作原理和实例详解
2016/04/07 Javascript
详解jQuery中的DOM操作
2016/12/23 Javascript
微信小程序的动画效果详解
2017/01/18 Javascript
jQuery 筛选器简单操作示例
2019/10/02 jQuery
vue实现一个矩形标记区域(rectangle marker)的方法
2020/10/28 Javascript
Vue3 响应式侦听与计算的实现
2020/11/11 Javascript
[03:22]DAC最前线(第二期)—DOTA2亚洲邀请赛主赛场周边及线路探访
2015/01/24 DOTA
[10:14]2018DOTA2国际邀请赛寻真——paiN Gaming不仅为自己而战
2018/08/14 DOTA
PyQt 线程类 QThread使用详解
2017/07/16 Python
Python3中lambda表达式与函数式编程讲解
2019/01/14 Python
python开发准备工作之配置虚拟环境(非常重要)
2019/02/11 Python
详解Python循环作用域与闭包
2019/03/21 Python
Python中的几种矩阵乘法(小结)
2019/07/10 Python
flask的orm框架SQLAlchemy查询实现解析
2019/12/12 Python
浅谈Python中的生成器和迭代器
2020/06/19 Python
英国第一独立滑雪板商店:The Snowboard Asylum
2020/01/16 全球购物
法律工作求职自荐信
2013/10/31 职场文书
应届毕业生自我鉴定范文
2013/12/27 职场文书
英语老师推荐信
2014/02/26 职场文书
开学典礼策划方案
2014/05/28 职场文书
中华魂放飞梦想演讲稿
2014/08/26 职场文书
教师节学生演讲稿
2014/09/03 职场文书
区域销售大会开幕词
2016/03/04 职场文书
MySQL 十大常用字符串函数详解
2021/06/30 MySQL
如何用vue实现网页截图你知道吗
2021/11/17 Vue.js
一文弄懂MySQL索引创建原则
2022/02/28 MySQL