keras实现VGG16 CIFAR10数据集方式


Posted in Python onJuly 07, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import optimizers
import numpy as np
from keras.layers.core import Lambda
from keras import backend as K
from keras.optimizers import SGD
from keras import regularizers
 
#import data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
weight_decay = 0.0005
nb_epoch=100
batch_size=32
 
#layer1 32*32*3
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=(32,32,3),kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
#layer2 32*32*64
model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer3 16*16*64
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer4 16*16*128
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer5 8*8*128
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer6 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer7 8*8*256
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer8 4*4*256
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer9 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer10 4*4*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#layer11 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer12 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
#layer13 2*2*512
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
#layer14 1*1*512
model.add(Flatten())
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer15 512
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
#layer16 512
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
# 10
 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy'])
 
model.fit(x_train,y_train,epochs=nb_epoch, batch_size=batch_size,
       validation_split=0.1, verbose=1)

补充知识:pytorch一步一步在VGG16上训练自己的数据集

准备数据集及加载,ImageFolder

在很多机器学习或者深度学习的任务中,往往我们要提供自己的图片。也就是说我们的数据集不是预先处理好的,像mnist,cifar10等它已经给你处理好了,更多的是原始的图片。比如我们以猫狗分类为例。在data文件下,有两个分别为train和val的文件夹。然后train下是cat和dog两个文件夹,里面存的是自己的图片数据,val文件夹同train。这样我们的数据集就准备好了。

keras实现VGG16 CIFAR10数据集方式

ImageFolder能够以目录名作为标签来对数据集做划分,下面是pytorch中文文档中关于ImageFolder的介绍:

keras实现VGG16 CIFAR10数据集方式

#对训练集做一个变换
train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224), #对图片尺寸做一个缩放切割
  transforms.RandomHorizontalFlip(), #水平翻转
  transforms.ToTensor(),   #转化为张量
  transforms.Normalize((.5, .5, .5), (.5, .5, .5)) #进行归一化
])
#对测试集做变换
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = "G:/data/train"      #训练集路径
#定义数据集
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = "G:/datat/val" 
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

迁移学习以VGG16为例

下面是迁移代码的实现:

class VGGNet(nn.Module):
  def __init__(self, num_classes=2):  #num_classes,此处为 二分类值为2
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)  #从预训练模型加载VGG16网络参数
    net.classifier = nn.Sequential() #将分类层置空,下面将改变我们的分类层
    self.features = net #保留VGG16的特征层
    self.classifier = nn.Sequential(  #定义自己的分类层
        nn.Linear(512 * 7 * 7, 512), #512 * 7 * 7不能改变 ,由VGG16网络决定的,第二个参数为神经元个数可以微调
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

完整代码如下

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
from torchvision import models

batch_size = 16
learning_rate = 0.0002
epoch = 10

train_transforms = transforms.Compose([
  transforms.RandomResizedCrop(224),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
val_transforms = transforms.Compose([
  transforms.Resize(256),
  transforms.RandomResizedCrop(224),
  transforms.ToTensor(),
  transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = './VGGDataSet/train'
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = './VGGDataSet/val'
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)

class VGGNet(nn.Module):
  def __init__(self, num_classes=3):
    super(VGGNet, self).__init__()
    net = models.vgg16(pretrained=True)
    net.classifier = nn.Sequential()
    self.features = net
    self.classifier = nn.Sequential(
        nn.Linear(512 * 7 * 7, 512),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(512, 128),
        nn.ReLU(True),
        nn.Dropout(),
        nn.Linear(128, num_classes),
    )

  def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), -1)
    x = self.classifier(x)
    return x

#--------------------训练过程---------------------------------
model = VGGNet()
if torch.cuda.is_available():
  model.cuda()
params = [{'params': md.parameters()} for md in model.children()
     if md in [model.classifier]]
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
loss_func = nn.CrossEntropyLoss()

Loss_list = []
Accuracy_list = []

for epoch in range(100):
  print('epoch {}'.format(epoch + 1))
  # training-----------------------------
  train_loss = 0.
  train_acc = 0.
  for batch_x, batch_y in train_dataloader:
    batch_x, batch_y = Variable(batch_x).cuda(), Variable(batch_y).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    train_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    train_correct = (pred == batch_y).sum()
    train_acc += train_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
  print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
    train_datasets)), train_acc / (len(train_datasets))))

  # evaluation--------------------------------
  model.eval()
  eval_loss = 0.
  eval_acc = 0.
  for batch_x, batch_y in val_dataloader:
    batch_x, batch_y = Variable(batch_x, volatile=True).cuda(), Variable(batch_y, volatile=True).cuda()
    out = model(batch_x)
    loss = loss_func(out, batch_y)
    eval_loss += loss.data[0]
    pred = torch.max(out, 1)[1]
    num_correct = (pred == batch_y).sum()
    eval_acc += num_correct.data[0]
  print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
    val_datasets)), eval_acc / (len(val_datasets))))
    
	Loss_list.append(eval_loss / (len(val_datasets)))
  Accuracy_list.append(100 * eval_acc / (len(val_datasets)))

x1 = range(0, 100)
x2 = range(0, 100)
y1 = Accuracy_list
y2 = Loss_list
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'o-')
plt.title('Test accuracy vs. epoches')
plt.ylabel('Test accuracy')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, '.-')
plt.xlabel('Test loss vs. epoches')
plt.ylabel('Test loss')
plt.show()
# plt.savefig("accuracy_loss.jpg")

以上这篇keras实现VGG16 CIFAR10数据集方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之关于循环的小伎俩
Oct 02 Python
Python 装饰器使用详解
Jul 29 Python
基于DataFrame筛选数据与loc的用法详解
May 18 Python
ubuntu17.4下为python和python3装上pip的方法
Jun 12 Python
Python 变量类型详解
Oct 10 Python
Python3 获取一大段文本之间两个关键字之间的内容方法
Oct 11 Python
使用IPython或Spyder将省略号表示的内容完整输出
Apr 20 Python
python对批量WAV音频进行等长分割的方法实现
Sep 25 Python
pandas 按日期范围筛选数据的实现
Feb 20 Python
Python办公自动化之Excel(中)
May 24 Python
Python 阶乘详解
Oct 05 Python
python数据处理之Pandas类型转换
Apr 28 Python
使用darknet框架的imagenet数据分类预训练操作
Jul 07 #Python
Python调用C语言程序方法解析
Jul 07 #Python
keras实现VGG16方式(预测一张图片)
Jul 07 #Python
通过实例解析Python RPC实现原理及方法
Jul 07 #Python
Keras预训练的ImageNet模型实现分类操作
Jul 07 #Python
Scrapy模拟登录赶集网的实现代码
Jul 07 #Python
scrapy框架携带cookie访问淘宝购物车功能的实现代码
Jul 07 #Python
You might like
php相当简单的分页类
2008/10/02 PHP
PHP strstr 函数判断字符串是否否存在的实例代码
2013/09/28 PHP
修改apache配置文件去除thinkphp url中的index.php
2014/01/17 PHP
php检查日期函数checkdate用法实例
2015/03/19 PHP
PHP SPL标准库之数据结构堆(SplHeap)简单使用实例
2015/05/12 PHP
CI框架AR操作(数组形式)实现插入多条sql数据的方法
2016/05/18 PHP
利用php-cli和任务计划实现刷新token功能的方法
2017/05/03 PHP
Laravel中使用Queue的最基本操作教程
2017/12/27 PHP
thinkPHP和onethink微信支付插件分享
2019/08/11 PHP
jquery获得下拉框值的代码
2011/08/13 Javascript
浅谈JavaScript编程语言的编码规范
2011/10/21 Javascript
jquery formValidator插件ajax验证 内容不做任何修改再离开提示错误的bug解决方法
2013/01/04 Javascript
jQuery中data()方法用法实例
2014/12/27 Javascript
JS模拟并美化的表单控件完整实例
2015/08/19 Javascript
jQuery下拉美化搜索表单效果代码分享
2015/08/25 Javascript
JavaScript模拟鼠标右键菜单效果
2020/12/08 Javascript
js实现无缝循环滚动
2020/06/23 Javascript
JS返回只包含数字类型的数组实例分析
2016/12/16 Javascript
vue2.0 中使用transition实现动画效果使用心得
2018/08/13 Javascript
jQuery AJAX与jQuery事件的分析讲解
2019/02/18 jQuery
jQuery实现的记住帐号密码功能完整示例
2019/08/03 jQuery
[51:32]Optic vs Serenity 2018国际邀请赛淘汰赛BO3 第一场 8.22
2018/08/23 DOTA
python正则表达式re模块详细介绍
2014/05/29 Python
浅谈Python中用datetime包进行对时间的一些操作
2016/06/23 Python
python爬虫之urllib,伪装,超时设置,异常处理的方法
2018/12/19 Python
pandas DataFrame 警告(SettingWithCopyWarning)的解决
2019/07/23 Python
python通过移动端访问查看电脑界面
2020/01/06 Python
Pandas之read_csv()读取文件跳过报错行的解决
2020/04/21 Python
在pycharm中使用matplotlib.pyplot 绘图时报错的解决
2020/06/01 Python
浅谈Python中的继承
2020/06/19 Python
来自Ocado的宠物商店:Fetch
2018/07/10 全球购物
称象教学反思
2014/02/03 职场文书
征用土地赔偿协议书
2014/09/26 职场文书
2015年艾滋病防治工作总结
2015/05/22 职场文书
基督教追悼会答谢词
2015/09/29 职场文书
你会写请假条吗?
2019/06/26 职场文书