基于python定位棋子位置及识别棋子颜色


Posted in Python onJuly 26, 2021

这一篇主要实现定位棋子位置及识别棋子颜色。

围棋棋盘原图如下:

基于python定位棋子位置及识别棋子颜色

经过上一章节处理,已经将棋盘位置找到,如下图:

基于python定位棋子位置及识别棋子颜色

现在根据新图,进行棋子位置的定位

1、将棋盘分割成19x19的小方格

为了定位出棋盘每个交叉点上,是否有棋子,需要将棋盘分割成19X19的小方格,由于围棋棋盘每个交叉线直接距离相同,是矩形,因此分割成小方格十分容易,如下图:

基于python定位棋子位置及识别棋子颜色

若想将棋盘分割成19x19的小方格,需要知道以下几个参数。

small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

这些可以使用imagewathch(VS下opencv的插件)工具,方便的知道,这个工具可以实时查看图像的宽高,某个位置的像素值。

下面是将原图分割成19X19小方格的代码

img = cv2.imread("src.jpg")
cv2.imshow("src",img)
#变量定义
small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

for i in range(19):
    for j in range(19):
        #print(i,j)
        lie = i
        hang = j
        Tp_x = small_length * lie
        Tp_y = small_length * hang
        Tp_width = qizi_zhijing
        Tp_height = qizi_zhijing

        #测试用
        cv2.rectangle(img, (Tp_x, Tp_y), (Tp_x + Tp_width, Tp_y + Tp_height),(255, 0, 0), 2)
        cv2.imwrite('img.jpg', img)
        img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w
        cv2.imwrite('img_temp3.jpg', img_temp)
        cv2.imshow("3", img_temp)
        cv2.waitKey(20)

2、根据像素占比识别是否是黑色棋子

基于python定位棋子位置及识别棋子颜色
基于python定位棋子位置及识别棋子颜色
基于python定位棋子位置及识别棋子颜色

上面三种图像是我们分割成小方格后的三种主要形态,分别代表黑色棋子,白色棋子以及无棋子。其中黑色棋子最好查找,我们将图像进行灰度化——二值化后,通过统计黑色像素占比超过一定数值,就能知道该处是否有黑色棋子。

这里我将统计黑色占比的代码,封装成了一个函数,如下;

"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi

3、根据像素占比识别是否是白色棋子

同样的,我们可以统计像素中白色占比,来进行识别该位置是否是白色棋子,但是这里需要注意一个问题,如果按照上面黑色棋子识别方法进行灰度化、二值化会造成白色棋子和无棋子分辨不了,二者都有大面积的白色,因此这里需要调整二值化的阈值,分开无棋子和白色棋子的图像。

封装好的代码如下:

"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

效果图如下:

基于python定位棋子位置及识别棋子颜色

4、将棋盘棋子位置通过列表表示

我们新建一个19*19的列表来存储棋子,列表中:

0:代表无棋子
1:代表白色
2:代表黑色

代码如下:

list = [[0 for i in range(19)] for j in range(19)]

当为黑色棋子时:

list[hang][lie]=2#黑色
#print("当前棋子为黑色")
print("第", i, "行,第", j, "列棋子为黑色:", i, j)

当为白色棋子时:

list[hang][lie] = 1  # 白色
#print("当前棋子为白色")
print("第", i, "行,第", j, "列棋子为白色:", i, j)

效果图如下:

基于python定位棋子位置及识别棋子颜色

完整代码如下:

from PIL import ImageGrab
import numpy as np
import cv2
from glob import glob
import os

import time


#Python将数字转换成大写字母
def getChar(number):
    factor, moder = divmod(number, 26) # 26 字母个数
    modChar = chr(moder + 65)          # 65 -> 'A'
    if factor != 0:
        modChar = getChar(factor-1) + modChar # factor - 1 : 商为有效值时起始数为 1 而余数是 0
    return modChar
def getChars(length):
    return [getChar(index) for index in range(length)]



"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi


"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

"""  "*******************************************************************************************
*函数功能 :定位棋盘位置
*输入参数 :截图
*返 回 值 :裁剪后的图像
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_weizhi(img):
    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    #img = cv2.imread("./screen/1.jpg")

    image = img.copy()
    w, h, c = img.shape
    img2 = np.zeros((w, h, c), np.uint8)
    img3 = np.zeros((w, h, c), np.uint8)
    # img = ImageGrab.grab() #bbox specifies specific region (bbox= x,y,width,height *starts top-left)

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    lower = np.array([10, 0, 0])
    upper = np.array([40, 255, 255])
    mask = cv2.inRange(hsv, lower, upper)
    erodeim = cv2.erode(mask, None, iterations=2)  # 腐蚀
    dilateim = cv2.dilate(erodeim, None, iterations=2)

    img = cv2.bitwise_and(img, img, mask=dilateim)
    frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, dst = cv2.threshold(frame, 100, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)



    #cv2.imshow("0", img)

    i = 0
    maxarea = 0
    nextarea = 0
    maxint = 0
    for c in contours:
        if cv2.contourArea(c) > maxarea:
            maxarea = cv2.contourArea(c)
            maxint = i
        i += 1

    # 多边形拟合
    epsilon = 0.02 * cv2.arcLength(contours[maxint], True)
    if epsilon < 1:
        print("error :   epsilon < 1")
        pass

    # 多边形拟合
    approx = cv2.approxPolyDP(contours[maxint], epsilon, True)
    [[x1, y1]] = approx[0]
    [[x2, y2]] = approx[2]

    checkerboard = image[y1:y2, x1:x2]
    # cv2.imshow("1", checkerboard)
    # cv2.waitKey(1000)
    #cv2.destroyAllWindows()
    return checkerboard

"""  "*******************************************************************************************
*函数功能 :定位棋子颜色及位置
*输入参数 :裁剪后的图像
*返 回 值 :棋子颜色及位置列表
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_yanse_weizhi(img):
    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    #img = cv2.imread("./checkerboard/checkerboard_1.jpg")
    img = cv2.resize(img, (724,724), interpolation=cv2.INTER_AREA)
    #cv2.imshow("src",img)
    #cv2.waitKey(1000)

    #变量定义
    small_length=38  #每个小格宽高
    qizi_zhijing=38#棋子直径
    zuoshangjiao=20#棋盘四周的宽度

    list = [[0 for i in range(19)] for j in range(19)]
    #print(list)

    for i in range(19):
        for j in range(19):

            lie = i
            hang = j

            Tp_x = small_length * lie
            Tp_y = small_length * hang
            Tp_width = qizi_zhijing
            Tp_height = qizi_zhijing

            img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w

            heise_zhanbi=Heise_zhanbi(img_temp)
            if heise_zhanbi>0.5:
                list[hang][lie]=2#黑色
                print("第", j+1, "行,第", i+1, "列棋子为黑色")
                #print("当前棋子为黑色")
            else:
                baise_zhanbi = Baise_zhanbi(img_temp)
                if baise_zhanbi > 0.15:
                    list[hang][lie] = 1  # 白色
                    print("第", j+1, "行,第",i+1 , "列棋子为白色")
                    #print("当前棋子为白色")
                else:
                    list[hang][lie] = 0  # 无棋子
                    #print("当前位置没有棋子")
            #print(heise_zhanbi)
    #cv2.imshow("2",img)
    #print("\n")
    #print(list)
    return  list



if __name__ =="__main__":
    list0 = [[0 for i in range(19)] for j in range(19)]
    list_finall = []
    img = cv2.imread("./screen/9.jpg")

    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    img_after=dingweiqizi_weizhi(img)
    #cv2.imshow("src",img)

    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    list1=dingweiqizi_yanse_weizhi(img_after)
    print(list1)

到此这篇关于基于python定位棋子位置及识别棋子颜色的文章就介绍到这了,更多相关python定位棋子位置及识别棋子颜色内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
phpsir 开发 一个检测百度关键字网站排名的python 程序
Sep 17 Python
Python编程中time模块的一些关键用法解析
Jan 19 Python
利用python发送和接收邮件
Sep 27 Python
Ubuntu下使用Python实现游戏制作中的切分图片功能
Mar 30 Python
Python模拟浏览器上传文件脚本的方法(Multipart/form-data格式)
Oct 22 Python
Python 串口读写的实现方法
Jun 12 Python
用Anaconda安装本地python包的方法及路径问题(图文)
Jul 16 Python
python 3.6.7实现端口扫描器
Sep 04 Python
如何通过python实现人脸识别验证
Jan 17 Python
Django执行源生mysql语句实现过程解析
Nov 12 Python
如何利用python生成MD5并去重
Dec 07 Python
python3美化表格数据输出结果的实现代码
Apr 14 Python
Python 处理表格进行成绩排序的操作代码
python识别围棋定位棋盘位置
python之基数排序的实现
Jul 26 #Python
python之PySide2安装使用及QT Designer UI设计案例教程
python代码实现备忘录案例讲解
Jul 26 #Python
python之django路由和视图案例教程
Jul 26 #Python
OpenCV图像变换之傅里叶变换的一些应用
You might like
Oracle 常见问题解答
2006/10/09 PHP
PHP实现采集中国天气网未来7天天气
2014/10/15 PHP
PHP+Mysql实现多关键字与多字段生成SQL语句的函数
2014/11/05 PHP
fckeditor上传文件按日期存放及重命名方法
2015/05/22 PHP
thinkphp多层MVC用法分析
2015/12/30 PHP
PHP生成各种常见验证码和Ajax验证过程
2016/01/10 PHP
php遍历解析xml字符串的方法
2016/05/05 PHP
PHP array_shift()用法实例分析
2019/01/07 PHP
yii 框架实现按天,月,年,自定义时间段统计数据的方法分析
2020/04/04 PHP
深入理解JavaScript 闭包究竟是什么
2013/04/12 Javascript
JavaScript地图拖动功能SpryMap的简单实现
2013/07/17 Javascript
js中arguments,caller,callee,apply的用法小结
2014/01/28 Javascript
基于Jquery插件Uploadify实现实时显示进度条上传图片
2020/03/26 Javascript
js实现可控制左右方向的无缝滚动效果
2016/05/29 Javascript
JQuery异步提交表单与文件上传功能示例
2017/01/12 Javascript
Node.js与Sails redis组件的使用教程
2017/02/14 Javascript
vue mixins组件复用的几种方式(小结)
2017/09/06 Javascript
JS实现静态页面搜索并高亮显示功能完整示例
2017/09/19 Javascript
如何把vuejs打包出来的文件整合到springboot里
2018/07/26 Javascript
Vuex 在Vue 组件中获得Vuex 状态state的方法
2018/08/27 Javascript
JavaScript使用localStorage存储数据
2019/09/25 Javascript
JS 遍历 json 和 JQuery 遍历json操作完整示例
2019/11/11 jQuery
js实现炫酷光感效果
2020/09/05 Javascript
[06:45]2018DOTA2亚洲邀请赛 4.5 SOLO赛 Sccc vs Maybe
2018/04/06 DOTA
Python 的 with 语句详解
2014/06/13 Python
python使用PyGame模块播放声音的方法
2015/05/20 Python
numpy.std() 计算矩阵标准差的方法
2018/07/11 Python
深入浅析Python获取对象信息的函数type()、isinstance()、dir()
2018/09/17 Python
tensorflow实现二维平面模拟三维数据教程
2020/02/11 Python
CSS3效果:自定义“W”形运行轨迹实例
2017/03/29 HTML / CSS
纯HTML5+CSS3制作生日蛋糕(代码易懂)
2016/11/16 HTML / CSS
经典婚礼主持开场白
2014/03/13 职场文书
小学生倡议书范文
2014/05/13 职场文书
在Django中使用MQTT的方法
2021/05/10 Python
MATLAB 全景图切割及盒图显示的实现步骤
2021/05/14 Python
nginx搭建NFS网络文件系统
2022/04/14 Servers