基于python定位棋子位置及识别棋子颜色


Posted in Python onJuly 26, 2021

这一篇主要实现定位棋子位置及识别棋子颜色。

围棋棋盘原图如下:

基于python定位棋子位置及识别棋子颜色

经过上一章节处理,已经将棋盘位置找到,如下图:

基于python定位棋子位置及识别棋子颜色

现在根据新图,进行棋子位置的定位

1、将棋盘分割成19x19的小方格

为了定位出棋盘每个交叉点上,是否有棋子,需要将棋盘分割成19X19的小方格,由于围棋棋盘每个交叉线直接距离相同,是矩形,因此分割成小方格十分容易,如下图:

基于python定位棋子位置及识别棋子颜色

若想将棋盘分割成19x19的小方格,需要知道以下几个参数。

small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

这些可以使用imagewathch(VS下opencv的插件)工具,方便的知道,这个工具可以实时查看图像的宽高,某个位置的像素值。

下面是将原图分割成19X19小方格的代码

img = cv2.imread("src.jpg")
cv2.imshow("src",img)
#变量定义
small_length=38  #每个小格宽高
qizi_zhijing=38#棋子直径
zuoshangjiao=20#棋盘四周的宽度

for i in range(19):
    for j in range(19):
        #print(i,j)
        lie = i
        hang = j
        Tp_x = small_length * lie
        Tp_y = small_length * hang
        Tp_width = qizi_zhijing
        Tp_height = qizi_zhijing

        #测试用
        cv2.rectangle(img, (Tp_x, Tp_y), (Tp_x + Tp_width, Tp_y + Tp_height),(255, 0, 0), 2)
        cv2.imwrite('img.jpg', img)
        img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w
        cv2.imwrite('img_temp3.jpg', img_temp)
        cv2.imshow("3", img_temp)
        cv2.waitKey(20)

2、根据像素占比识别是否是黑色棋子

基于python定位棋子位置及识别棋子颜色
基于python定位棋子位置及识别棋子颜色
基于python定位棋子位置及识别棋子颜色

上面三种图像是我们分割成小方格后的三种主要形态,分别代表黑色棋子,白色棋子以及无棋子。其中黑色棋子最好查找,我们将图像进行灰度化——二值化后,通过统计黑色像素占比超过一定数值,就能知道该处是否有黑色棋子。

这里我将统计黑色占比的代码,封装成了一个函数,如下;

"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi

3、根据像素占比识别是否是白色棋子

同样的,我们可以统计像素中白色占比,来进行识别该位置是否是白色棋子,但是这里需要注意一个问题,如果按照上面黑色棋子识别方法进行灰度化、二值化会造成白色棋子和无棋子分辨不了,二者都有大面积的白色,因此这里需要调整二值化的阈值,分开无棋子和白色棋子的图像。

封装好的代码如下:

"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

效果图如下:

基于python定位棋子位置及识别棋子颜色

4、将棋盘棋子位置通过列表表示

我们新建一个19*19的列表来存储棋子,列表中:

0:代表无棋子
1:代表白色
2:代表黑色

代码如下:

list = [[0 for i in range(19)] for j in range(19)]

当为黑色棋子时:

list[hang][lie]=2#黑色
#print("当前棋子为黑色")
print("第", i, "行,第", j, "列棋子为黑色:", i, j)

当为白色棋子时:

list[hang][lie] = 1  # 白色
#print("当前棋子为白色")
print("第", i, "行,第", j, "列棋子为白色:", i, j)

效果图如下:

基于python定位棋子位置及识别棋子颜色

完整代码如下:

from PIL import ImageGrab
import numpy as np
import cv2
from glob import glob
import os

import time


#Python将数字转换成大写字母
def getChar(number):
    factor, moder = divmod(number, 26) # 26 字母个数
    modChar = chr(moder + 65)          # 65 -> 'A'
    if factor != 0:
        modChar = getChar(factor-1) + modChar # factor - 1 : 商为有效值时起始数为 1 而余数是 0
    return modChar
def getChars(length):
    return [getChar(index) for index in range(length)]



"""  "*******************************************************************************************
*函数功能 :统计二值化图片黑色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回黑色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Heise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(a) / (float)(height*width)
    #print("黑色像素个数", a, "黑色像素占比", zhanbi)
    return zhanbi


"""  "*******************************************************************************************
*函数功能 :统计二值化图片白色像素点百分比
*输入参数 :输入裁剪后图像,
*返 回 值 :返回白色像素点占比0-1之间
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def Baise_zhanbi(img):
    [height, width, tongdao] = img.shape
    #print(width, height, tongdao)
    # cv2.imshow("3", img)
    # cv2.waitKey(20)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("binary", gray)
    # cv2.waitKey(100)

    etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)
    # cv2.imshow("threshold", threshold)
    # cv2.waitKey(200)
    a = 0
    b = 0
    counter = 0#;/*目标像素点个数*/
    zhanbi = 0#;/*目标像素点比值*/
    for row in range(height):
        for col in range(width):
            val = threshold[row][col]
            if (val) == 0:#黑色
                a = a + 1
            else:
                b = b + 1
    zhanbi = (float)(b) / (float)(height*width)
    #print("白色像素个数", b, "白色像素占比", zhanbi)
    return zhanbi

"""  "*******************************************************************************************
*函数功能 :定位棋盘位置
*输入参数 :截图
*返 回 值 :裁剪后的图像
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_weizhi(img):
    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    #img = cv2.imread("./screen/1.jpg")

    image = img.copy()
    w, h, c = img.shape
    img2 = np.zeros((w, h, c), np.uint8)
    img3 = np.zeros((w, h, c), np.uint8)
    # img = ImageGrab.grab() #bbox specifies specific region (bbox= x,y,width,height *starts top-left)

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    lower = np.array([10, 0, 0])
    upper = np.array([40, 255, 255])
    mask = cv2.inRange(hsv, lower, upper)
    erodeim = cv2.erode(mask, None, iterations=2)  # 腐蚀
    dilateim = cv2.dilate(erodeim, None, iterations=2)

    img = cv2.bitwise_and(img, img, mask=dilateim)
    frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, dst = cv2.threshold(frame, 100, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)



    #cv2.imshow("0", img)

    i = 0
    maxarea = 0
    nextarea = 0
    maxint = 0
    for c in contours:
        if cv2.contourArea(c) > maxarea:
            maxarea = cv2.contourArea(c)
            maxint = i
        i += 1

    # 多边形拟合
    epsilon = 0.02 * cv2.arcLength(contours[maxint], True)
    if epsilon < 1:
        print("error :   epsilon < 1")
        pass

    # 多边形拟合
    approx = cv2.approxPolyDP(contours[maxint], epsilon, True)
    [[x1, y1]] = approx[0]
    [[x2, y2]] = approx[2]

    checkerboard = image[y1:y2, x1:x2]
    # cv2.imshow("1", checkerboard)
    # cv2.waitKey(1000)
    #cv2.destroyAllWindows()
    return checkerboard

"""  "*******************************************************************************************
*函数功能 :定位棋子颜色及位置
*输入参数 :裁剪后的图像
*返 回 值 :棋子颜色及位置列表
*编写时间 : 2021.6.30
*作    者 : diyun
********************************************************************************************"""
def dingweiqizi_yanse_weizhi(img):
    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    #img = cv2.imread("./checkerboard/checkerboard_1.jpg")
    img = cv2.resize(img, (724,724), interpolation=cv2.INTER_AREA)
    #cv2.imshow("src",img)
    #cv2.waitKey(1000)

    #变量定义
    small_length=38  #每个小格宽高
    qizi_zhijing=38#棋子直径
    zuoshangjiao=20#棋盘四周的宽度

    list = [[0 for i in range(19)] for j in range(19)]
    #print(list)

    for i in range(19):
        for j in range(19):

            lie = i
            hang = j

            Tp_x = small_length * lie
            Tp_y = small_length * hang
            Tp_width = qizi_zhijing
            Tp_height = qizi_zhijing

            img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w

            heise_zhanbi=Heise_zhanbi(img_temp)
            if heise_zhanbi>0.5:
                list[hang][lie]=2#黑色
                print("第", j+1, "行,第", i+1, "列棋子为黑色")
                #print("当前棋子为黑色")
            else:
                baise_zhanbi = Baise_zhanbi(img_temp)
                if baise_zhanbi > 0.15:
                    list[hang][lie] = 1  # 白色
                    print("第", j+1, "行,第",i+1 , "列棋子为白色")
                    #print("当前棋子为白色")
                else:
                    list[hang][lie] = 0  # 无棋子
                    #print("当前位置没有棋子")
            #print(heise_zhanbi)
    #cv2.imshow("2",img)
    #print("\n")
    #print(list)
    return  list



if __name__ =="__main__":
    list0 = [[0 for i in range(19)] for j in range(19)]
    list_finall = []
    img = cv2.imread("./screen/9.jpg")

    '''********************************************
    1、定位棋盘位置
    ********************************************'''
    img_after=dingweiqizi_weizhi(img)
    #cv2.imshow("src",img)

    '''********************************************
    2、识别棋盘棋子位置及颜色及序号;
    ********************************************'''
    list1=dingweiqizi_yanse_weizhi(img_after)
    print(list1)

到此这篇关于基于python定位棋子位置及识别棋子颜色的文章就介绍到这了,更多相关python定位棋子位置及识别棋子颜色内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python的ORM框架SQLObject入门实例
Apr 28 Python
Python实现的生成自我描述脚本分享(很有意思的程序)
Jul 18 Python
python正则分析nginx的访问日志
Jan 17 Python
对pycharm代码整体左移和右移缩进快捷键的介绍
Jul 16 Python
Python SMTP发送邮件遇到的一些问题及解决办法
Oct 24 Python
Python面向对象基础入门之编码细节与注意事项
Dec 11 Python
Python3远程监控程序的实现方法
Jul 15 Python
解决django服务器重启端口被占用的问题
Jul 26 Python
python时间日期操作方法实例小结
Feb 06 Python
在django中使用apscheduler 执行计划任务的实现方法
Feb 11 Python
python实现扫雷小游戏
Apr 24 Python
教你利用python实现企业微信发送消息
May 23 Python
Python 处理表格进行成绩排序的操作代码
python识别围棋定位棋盘位置
python之基数排序的实现
Jul 26 #Python
python之PySide2安装使用及QT Designer UI设计案例教程
python代码实现备忘录案例讲解
Jul 26 #Python
python之django路由和视图案例教程
Jul 26 #Python
OpenCV图像变换之傅里叶变换的一些应用
You might like
PHP中的串行化变量和序列化对象
2006/09/05 PHP
如何隐藏你的.php文件
2007/01/04 PHP
php采集中国代理服务器网的方法
2015/06/16 PHP
PHP执行linux命令常用函数汇总
2016/02/02 PHP
php遍历、读取文件夹中图片并分页显示图片的方法
2016/11/15 PHP
浅谈PHP的反射机制
2016/12/15 PHP
YII框架模块化处理操作示例
2019/04/26 PHP
增强用户体验友好性之jquery easyui window 窗口关闭时的提示
2012/06/22 Javascript
php对mongodb的扩展(初识如故)
2012/11/11 Javascript
div模拟滚动条效果示例代码
2013/10/16 Javascript
JavaScript获取伪元素(Pseudo-Element)属性的方法技巧
2015/03/13 Javascript
javasript实现密码的隐藏与显示
2015/05/08 Javascript
基于jQuery实现多层次的手风琴效果附源码
2015/09/21 Javascript
JS实现浏览器状态栏文字从右向左弹出效果代码
2015/10/27 Javascript
javascript运算符——位运算符全面介绍
2016/07/14 Javascript
JS实现探测网站链接的方法【测试可用】
2016/11/08 Javascript
基于javascript实现的快速排序
2016/12/02 Javascript
jQuery展示表格点击变色、全选、删除
2017/01/05 Javascript
JS复制对应id的内容到粘贴板(Ctrl+C效果)
2017/01/23 Javascript
浅谈React中组件间抽象
2018/01/27 Javascript
使用JavaScript实现贪吃蛇游戏
2020/09/29 Javascript
python执行等待程序直到第二天零点的方法
2015/04/23 Python
Python安装pycurl失败的解决方法
2018/10/15 Python
Django利用cookie保存用户登录信息的简单实现方法
2019/05/27 Python
如何在windows下安装Pycham2020软件(方法步骤详解)
2020/05/03 Python
详解Python中Pyyaml模块的使用
2020/10/08 Python
python实现文件+参数发送request的实例代码
2021/01/05 Python
用gpu训练好的神经网络,用tensorflow-cpu跑出错的原因及解决方案
2021/03/03 Python
日本热销NO.1胶原蛋白冻:Aishitoto爱希特多
2019/06/20 全球购物
给老师的一封建议书
2014/03/13 职场文书
英语教师岗位职责
2014/03/16 职场文书
中学优秀班主任事迹材料
2014/05/01 职场文书
小学节能减排倡议书
2014/05/15 职场文书
市委常委会班子党的群众路线教育实践活动整改方案
2014/10/25 职场文书
以权谋私检举信范文
2015/03/02 职场文书
在HTML5 localStorage中存储对象的示例代码
2021/04/21 Javascript