OpenCV图像变换之傅里叶变换的一些应用


Posted in Python onJuly 26, 2021

前言

这篇博客将介绍OpenCV中的图像变换,包括用Numpy、OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用;

2D Discrete Fourier Transform (DFT)二维离散傅里叶变换
Fast Fourier Transform (FFT) 快速傅里叶变换

傅立叶变换用于分析各种滤波器的频率特性。对于图像采用二维离散傅立叶变换(DFT)求频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。

OpenCV使用cv2.dft()、cv2.idft() 实现傅里叶变换,效率更高一些(比OpenCV快3倍)

Numpy使用np.ifft2() 、np.fft.ifftshift() 实现傅里叶变换,使用更友好一些;

1. 效果图

灰度图 VS 傅里叶变换效果图如下:

可以看到白色区域大多在中心,显示低频率的内容比较多。

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉低频内容后效果图如下:

可以看到使用矩形滤波后,效果并不好,有波纹的振铃效果;用高斯滤波能好点;

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉高频内容后效果图如下:

删除图像中的高频内容,即将LPF应用于图像,它实际上模糊了图像。

OpenCV图像变换之傅里叶变换的一些应用

各滤波器是 HPF(High Pass Filter)还是 LPF(Low Pass Filter),一目了然:

拉普拉斯是高频滤波器;

OpenCV图像变换之傅里叶变换的一些应用

2. 原理

  • DFT的性能优化:在一定的阵列尺寸下,DFT计算的性能较好。当数组大小为2的幂时,速度最快。大小为2、3和5的乘积的数组也可以非常有效地处理。

为达到最佳性能,可以通过OpenCV提供的函数cv2.getOptimalDFTSize() 寻找最佳尺寸。
然后将图像填充成最佳性能大小的阵列,对于OpenCV,必须手动填充零。但是对于Numpy,可以指定FFT计算的新大小,会自动填充零。

通过使用最优阵列,基本能提升4倍的效率。而OpenCV本身比Numpy效率快近3倍;

拉普拉斯是高通滤波器(High Pass Filter)

3. 源码

3.1 Numpy实现傅里叶变换

# 傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)

# 使用Numpy实现傅里叶变换:fft包
# fft.fft2() 进行频率变换
# 参数1:输入图像的灰度图
# 参数2:>输入图像 用0填充;  <输入图像 剪切输入图像; 不传递 返回输入图像
f = np.fft.fft2(img)

# 一旦得到结果,零频率分量(直流分量)将出现在左上角。
# 如果要将其置于中心,则需要使用np.fft.fftshift()将结果在两个方向上移动。
# 一旦找到了频率变换,就能找到幅度谱。
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

# 找到了频率变换,就可以进行高通滤波和重建图像,也就是求逆DFT
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
fshift[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 图像渐变章节学习到:高通滤波是一种边缘检测操作。这也表明大部分图像数据存在于频谱的低频区域。
# 仔细观察结果可以看到最后一张用JET颜色显示的图像,有一些瑕疵(它显示了一些波纹状的结构,这就是所谓的振铃效应。)
# 这是由于用矩形窗口mask造成的,掩码mask被转换为sinc形状,从而导致此问题。所以矩形窗口不用于过滤,更好的选择是高斯mask。)
plt.subplot(131), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_back, cmap='gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])

plt.show()

3.2 OpenCV实现傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)
rows, cols = img.shape
print(rows, cols)

# 计算DFT效率最佳的尺寸
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print(nrows, ncols)

nimg = np.zeros((nrows, ncols))
nimg[:rows, :cols] = img
img = nimg

# OpenCV计算快速傅里叶变换,输入图像应首先转换为np.float32,然后使用函数cv2.dft()和cv2.idft()。
# 返回结果与Numpy相同,但有两个通道。第一个通道为有结果的实部,第二个通道为有结果的虚部。
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

rows, cols = img.shape
crow, ccol = rows // 2, cols // 2

# 首先创建一个mask,中心正方形为1,其他均为0
# 如何删除图像中的高频内容,即我们将LPF应用于图像。它实际上模糊了图像。
# 为此首先创建一个在低频时具有高值的掩码,即传递LF内容,在HF区域为0。
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 应用掩码Mask和求逆DTF
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

3.3 HPF or LPF?

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 简单的均值滤波
mean_filter = np.ones((3, 3))

# 构建高斯滤波
x = cv2.getGaussianKernel(5, 10)
gaussian = x * x.T

# 不同的边缘检测算法Scharr-x方向
scharr = np.array([[-3, 0, 3],
                   [-10, 0, 10],
                   [-3, 0, 3]])
# Sobel_x
sobel_x = np.array([[-1, 0, 1],
                    [-2, 0, 2],
                    [-1, 0, 1]])
# Sobel_y
sobel_y = np.array([[-1, -2, -1],
                    [0, 0, 0],
                    [1, 2, 1]])
# 拉普拉斯
laplacian = np.array([[0, 1, 0],
                      [1, -4, 1],
                      [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', \
               'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z) + 1) for z in fft_shift]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(mag_spectrum[i], cmap='gray')
    plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])

plt.show()

参考

  • https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.html#fourier-transform

总结

到此这篇关于OpenCV图像变换之傅里叶变换的文章就介绍到这了,更多相关OpenCV图像变换傅里叶变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python判断文本中消息重复次数的方法
Apr 27 Python
Python3安装Pymongo详细步骤
May 26 Python
python 生成器协程运算实例
Sep 04 Python
Python使用requests及BeautifulSoup构建爬虫实例代码
Jan 24 Python
Django + Uwsgi + Nginx 实现生产环境部署的方法
Jun 20 Python
Python补齐字符串长度的实例
Nov 15 Python
Python 实现判断图片格式并转换,将转换的图像存到生成的文件夹中
Jan 13 Python
Scrapy框架实现的登录网站操作示例
Feb 06 Python
OpenCV4.1.0+VS2017环境配置的方法步骤
Jul 09 Python
Python常用类型转换实现代码实例
Jul 28 Python
python3 sqlite3限制条件查询的操作
Apr 07 Python
AI:如何训练机器学习的模型
Apr 16 Python
Python类方法总结讲解
pandas数值排序的实现实例
Jul 25 #Python
python非标准时间的转换
Jul 25 #Python
OpenCV 图像梯度的实现方法
Jul 25 #Python
ROS系统将python包编译为可执行文件的简单步骤
Jul 25 #Python
Pandas自定义选项option设置
Jul 25 #Python
Pandas 稀疏数据结构的实现
Jul 25 #Python
You might like
比较简单实用的PHP无限分类源码分享(思路不错)
2011/10/13 PHP
PHP对文件夹递归执行chmod命令的方法
2015/06/19 PHP
详解WordPress开发中wp_title()函数的用法
2016/01/07 PHP
php中分页及SqlHelper类用法实例
2017/01/12 PHP
PHP面向对象五大原则之开放-封闭原则(OCP)详解
2018/04/04 PHP
ThinkPHP5.0框架使用build 自动生成模块操作示例
2019/04/11 PHP
php实现根据身份证获取精准年龄
2020/02/26 PHP
jquery提升性能最佳实践小结
2010/12/06 Javascript
面向对象继承实例(a如何继承b问题)(自写)
2013/07/01 Javascript
jquery foreach使用示例
2013/09/12 Javascript
node.js中的http.response.write方法使用说明
2014/12/14 Javascript
jQuery实现瀑布流布局详解(PC和移动端)
2020/09/01 Javascript
深入理解jquery中的事件与动画
2016/05/24 Javascript
详解Angular.js数据绑定时自动转义html标签及内容
2017/03/30 Javascript
js中字符型和数值型数字的互相转化方法(必看)
2017/04/25 Javascript
EasyUI的DataGrid每行数据添加操作按钮的实现代码
2017/08/22 Javascript
vue2.0+vue-router构建一个简单的列表页的示例代码
2019/02/13 Javascript
解决ant Design中Select设置initialValue时的大坑
2020/10/29 Javascript
Pandas 同元素多列去重的实例
2018/07/03 Python
Python Pexpect库的简单使用方法
2019/01/29 Python
Python3.5面向对象程序设计之类的继承和多态详解
2019/04/24 Python
python3.5 cv2 获取视频特定帧生成jpg图片
2019/08/28 Python
Pandas-Cookbook 时间戳处理方式
2019/12/07 Python
python实现井字棋小游戏
2020/03/04 Python
python给视频添加背景音乐并改变音量的具体方法
2020/07/19 Python
python向xls写入数据(包括合并,边框,对齐,列宽)
2021/02/02 Python
英国时尚饰品和发饰购物网站:Claire’s
2017/07/04 全球购物
ASOS亚洲:ASOS Asia
2018/03/04 全球购物
皇家阿尔伯特瓷器美国官网:Royal Albert美国
2020/02/16 全球购物
应用艺术专业个人的自我评价
2014/01/03 职场文书
公司接待方案
2014/03/08 职场文书
社区文化建设方案
2014/05/02 职场文书
关于感恩的演讲稿200字
2014/08/26 职场文书
公司的门卫岗位职责
2014/09/09 职场文书
特别篇动画《总之就是非常可爱 ~制服~》PV公开,2022年夏季播出
2022/04/04 日漫
Python find()、rfind()方法及作用
2022/12/24 Python