OpenCV图像变换之傅里叶变换的一些应用


Posted in Python onJuly 26, 2021

前言

这篇博客将介绍OpenCV中的图像变换,包括用Numpy、OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用;

2D Discrete Fourier Transform (DFT)二维离散傅里叶变换
Fast Fourier Transform (FFT) 快速傅里叶变换

傅立叶变换用于分析各种滤波器的频率特性。对于图像采用二维离散傅立叶变换(DFT)求频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。

OpenCV使用cv2.dft()、cv2.idft() 实现傅里叶变换,效率更高一些(比OpenCV快3倍)

Numpy使用np.ifft2() 、np.fft.ifftshift() 实现傅里叶变换,使用更友好一些;

1. 效果图

灰度图 VS 傅里叶变换效果图如下:

可以看到白色区域大多在中心,显示低频率的内容比较多。

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉低频内容后效果图如下:

可以看到使用矩形滤波后,效果并不好,有波纹的振铃效果;用高斯滤波能好点;

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉高频内容后效果图如下:

删除图像中的高频内容,即将LPF应用于图像,它实际上模糊了图像。

OpenCV图像变换之傅里叶变换的一些应用

各滤波器是 HPF(High Pass Filter)还是 LPF(Low Pass Filter),一目了然:

拉普拉斯是高频滤波器;

OpenCV图像变换之傅里叶变换的一些应用

2. 原理

  • DFT的性能优化:在一定的阵列尺寸下,DFT计算的性能较好。当数组大小为2的幂时,速度最快。大小为2、3和5的乘积的数组也可以非常有效地处理。

为达到最佳性能,可以通过OpenCV提供的函数cv2.getOptimalDFTSize() 寻找最佳尺寸。
然后将图像填充成最佳性能大小的阵列,对于OpenCV,必须手动填充零。但是对于Numpy,可以指定FFT计算的新大小,会自动填充零。

通过使用最优阵列,基本能提升4倍的效率。而OpenCV本身比Numpy效率快近3倍;

拉普拉斯是高通滤波器(High Pass Filter)

3. 源码

3.1 Numpy实现傅里叶变换

# 傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)

# 使用Numpy实现傅里叶变换:fft包
# fft.fft2() 进行频率变换
# 参数1:输入图像的灰度图
# 参数2:>输入图像 用0填充;  <输入图像 剪切输入图像; 不传递 返回输入图像
f = np.fft.fft2(img)

# 一旦得到结果,零频率分量(直流分量)将出现在左上角。
# 如果要将其置于中心,则需要使用np.fft.fftshift()将结果在两个方向上移动。
# 一旦找到了频率变换,就能找到幅度谱。
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

# 找到了频率变换,就可以进行高通滤波和重建图像,也就是求逆DFT
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
fshift[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 图像渐变章节学习到:高通滤波是一种边缘检测操作。这也表明大部分图像数据存在于频谱的低频区域。
# 仔细观察结果可以看到最后一张用JET颜色显示的图像,有一些瑕疵(它显示了一些波纹状的结构,这就是所谓的振铃效应。)
# 这是由于用矩形窗口mask造成的,掩码mask被转换为sinc形状,从而导致此问题。所以矩形窗口不用于过滤,更好的选择是高斯mask。)
plt.subplot(131), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_back, cmap='gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])

plt.show()

3.2 OpenCV实现傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)
rows, cols = img.shape
print(rows, cols)

# 计算DFT效率最佳的尺寸
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print(nrows, ncols)

nimg = np.zeros((nrows, ncols))
nimg[:rows, :cols] = img
img = nimg

# OpenCV计算快速傅里叶变换,输入图像应首先转换为np.float32,然后使用函数cv2.dft()和cv2.idft()。
# 返回结果与Numpy相同,但有两个通道。第一个通道为有结果的实部,第二个通道为有结果的虚部。
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

rows, cols = img.shape
crow, ccol = rows // 2, cols // 2

# 首先创建一个mask,中心正方形为1,其他均为0
# 如何删除图像中的高频内容,即我们将LPF应用于图像。它实际上模糊了图像。
# 为此首先创建一个在低频时具有高值的掩码,即传递LF内容,在HF区域为0。
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 应用掩码Mask和求逆DTF
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

3.3 HPF or LPF?

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 简单的均值滤波
mean_filter = np.ones((3, 3))

# 构建高斯滤波
x = cv2.getGaussianKernel(5, 10)
gaussian = x * x.T

# 不同的边缘检测算法Scharr-x方向
scharr = np.array([[-3, 0, 3],
                   [-10, 0, 10],
                   [-3, 0, 3]])
# Sobel_x
sobel_x = np.array([[-1, 0, 1],
                    [-2, 0, 2],
                    [-1, 0, 1]])
# Sobel_y
sobel_y = np.array([[-1, -2, -1],
                    [0, 0, 0],
                    [1, 2, 1]])
# 拉普拉斯
laplacian = np.array([[0, 1, 0],
                      [1, -4, 1],
                      [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', \
               'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z) + 1) for z in fft_shift]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(mag_spectrum[i], cmap='gray')
    plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])

plt.show()

参考

  • https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.html#fourier-transform

总结

到此这篇关于OpenCV图像变换之傅里叶变换的文章就介绍到这了,更多相关OpenCV图像变换傅里叶变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python数据库的连接实现方法与注意事项
Feb 27 Python
Python2.7+pytesser实现简单验证码的识别方法
Dec 29 Python
python版学生管理系统
Jan 10 Python
Python实现将照片变成卡通图片的方法【基于opencv】
Jan 17 Python
浅析Python3爬虫登录模拟
Feb 07 Python
Python数据抓取爬虫代理防封IP方法
Dec 23 Python
Python 使用 attrs 和 cattrs 实现面向对象编程的实践
Jun 12 Python
python爬虫 2019中国好声音评论爬取过程解析
Aug 26 Python
python中struct模块之字节型数据的处理方法
Aug 27 Python
Python小程序之在图片上加入数字的代码
Nov 26 Python
基于python实现数组格式参数加密计算
Apr 21 Python
教你如何使用Python Tkinter库制作记事本
Jun 10 Python
Python类方法总结讲解
pandas数值排序的实现实例
Jul 25 #Python
python非标准时间的转换
Jul 25 #Python
OpenCV 图像梯度的实现方法
Jul 25 #Python
ROS系统将python包编译为可执行文件的简单步骤
Jul 25 #Python
Pandas自定义选项option设置
Jul 25 #Python
Pandas 稀疏数据结构的实现
Jul 25 #Python
You might like
apache+codeigniter 通过.htcaccess做动态二级域名解析
2012/07/01 PHP
php防止网站被刷新的方法汇总
2014/12/01 PHP
PHP 验证登陆类分享
2015/03/13 PHP
DEDECMS首页调用图片集里的多张图片
2015/06/05 PHP
php实现图片以base64显示的方法
2016/10/13 PHP
yii2学习教程之5种内置行为类详解
2017/08/03 PHP
JS 动态加载脚本的4种方法
2009/05/05 Javascript
jQuery阻止冒泡和HTML默认操作
2010/11/17 Javascript
基于jquery自定义图片热区效果
2012/07/21 Javascript
简单js代码实现selece二级联动(推荐)
2014/02/18 Javascript
jqueryUI里拖拽排序示例分析
2015/02/26 Javascript
JavaScript中setMonth()方法的使用详解
2015/06/11 Javascript
JavaScript中利用各种循环进行遍历的方式总结
2015/11/10 Javascript
jQuery获取元素父节点的方法
2016/06/21 Javascript
Angular.js项目中使用gulp实现自动化构建以及压缩打包详解
2017/07/19 Javascript
webpack 如何解析代码模块路径的实现
2019/09/04 Javascript
JQuery省市联动效果实现过程详解
2020/05/08 jQuery
nuxt.js写项目时增加错误提示页面操作
2020/11/05 Javascript
Python进阶之递归函数的用法及其示例
2018/01/31 Python
python实现五子棋游戏
2019/06/18 Python
python入门之基础语法学习笔记
2020/02/08 Python
python实现超级玛丽游戏
2020/03/18 Python
如何使用Python处理HDF格式数据及可视化问题
2020/06/24 Python
Python3 用matplotlib绘制sigmoid函数的案例
2020/12/11 Python
基于css3仿造window7的开始菜单
2010/06/17 HTML / CSS
Html5 实现微信分享及自定义内容的流程
2019/08/20 HTML / CSS
FitFlop美国官网:英国符合人体工学的鞋类品牌
2018/10/05 全球购物
英国折扣高尔夫商店:Discount Golf Store
2019/11/19 全球购物
社会实践自我鉴定
2013/11/07 职场文书
店长岗位的工作内容
2013/11/12 职场文书
顶碗少年教学反思
2014/02/21 职场文书
广播节目策划方案
2014/05/23 职场文书
八项规定整改方案
2014/10/01 职场文书
借条格式范本
2015/05/25 职场文书
如何制定销售人员薪酬制度?
2019/07/09 职场文书
了解Redis常见应用场景
2021/06/23 Redis