OpenCV图像变换之傅里叶变换的一些应用


Posted in Python onJuly 26, 2021

前言

这篇博客将介绍OpenCV中的图像变换,包括用Numpy、OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用;

2D Discrete Fourier Transform (DFT)二维离散傅里叶变换
Fast Fourier Transform (FFT) 快速傅里叶变换

傅立叶变换用于分析各种滤波器的频率特性。对于图像采用二维离散傅立叶变换(DFT)求频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。

OpenCV使用cv2.dft()、cv2.idft() 实现傅里叶变换,效率更高一些(比OpenCV快3倍)

Numpy使用np.ifft2() 、np.fft.ifftshift() 实现傅里叶变换,使用更友好一些;

1. 效果图

灰度图 VS 傅里叶变换效果图如下:

可以看到白色区域大多在中心,显示低频率的内容比较多。

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉低频内容后效果图如下:

可以看到使用矩形滤波后,效果并不好,有波纹的振铃效果;用高斯滤波能好点;

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉高频内容后效果图如下:

删除图像中的高频内容,即将LPF应用于图像,它实际上模糊了图像。

OpenCV图像变换之傅里叶变换的一些应用

各滤波器是 HPF(High Pass Filter)还是 LPF(Low Pass Filter),一目了然:

拉普拉斯是高频滤波器;

OpenCV图像变换之傅里叶变换的一些应用

2. 原理

  • DFT的性能优化:在一定的阵列尺寸下,DFT计算的性能较好。当数组大小为2的幂时,速度最快。大小为2、3和5的乘积的数组也可以非常有效地处理。

为达到最佳性能,可以通过OpenCV提供的函数cv2.getOptimalDFTSize() 寻找最佳尺寸。
然后将图像填充成最佳性能大小的阵列,对于OpenCV,必须手动填充零。但是对于Numpy,可以指定FFT计算的新大小,会自动填充零。

通过使用最优阵列,基本能提升4倍的效率。而OpenCV本身比Numpy效率快近3倍;

拉普拉斯是高通滤波器(High Pass Filter)

3. 源码

3.1 Numpy实现傅里叶变换

# 傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)

# 使用Numpy实现傅里叶变换:fft包
# fft.fft2() 进行频率变换
# 参数1:输入图像的灰度图
# 参数2:>输入图像 用0填充;  <输入图像 剪切输入图像; 不传递 返回输入图像
f = np.fft.fft2(img)

# 一旦得到结果,零频率分量(直流分量)将出现在左上角。
# 如果要将其置于中心,则需要使用np.fft.fftshift()将结果在两个方向上移动。
# 一旦找到了频率变换,就能找到幅度谱。
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

# 找到了频率变换,就可以进行高通滤波和重建图像,也就是求逆DFT
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
fshift[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 图像渐变章节学习到:高通滤波是一种边缘检测操作。这也表明大部分图像数据存在于频谱的低频区域。
# 仔细观察结果可以看到最后一张用JET颜色显示的图像,有一些瑕疵(它显示了一些波纹状的结构,这就是所谓的振铃效应。)
# 这是由于用矩形窗口mask造成的,掩码mask被转换为sinc形状,从而导致此问题。所以矩形窗口不用于过滤,更好的选择是高斯mask。)
plt.subplot(131), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_back, cmap='gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])

plt.show()

3.2 OpenCV实现傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)
rows, cols = img.shape
print(rows, cols)

# 计算DFT效率最佳的尺寸
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print(nrows, ncols)

nimg = np.zeros((nrows, ncols))
nimg[:rows, :cols] = img
img = nimg

# OpenCV计算快速傅里叶变换,输入图像应首先转换为np.float32,然后使用函数cv2.dft()和cv2.idft()。
# 返回结果与Numpy相同,但有两个通道。第一个通道为有结果的实部,第二个通道为有结果的虚部。
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

rows, cols = img.shape
crow, ccol = rows // 2, cols // 2

# 首先创建一个mask,中心正方形为1,其他均为0
# 如何删除图像中的高频内容,即我们将LPF应用于图像。它实际上模糊了图像。
# 为此首先创建一个在低频时具有高值的掩码,即传递LF内容,在HF区域为0。
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 应用掩码Mask和求逆DTF
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

3.3 HPF or LPF?

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 简单的均值滤波
mean_filter = np.ones((3, 3))

# 构建高斯滤波
x = cv2.getGaussianKernel(5, 10)
gaussian = x * x.T

# 不同的边缘检测算法Scharr-x方向
scharr = np.array([[-3, 0, 3],
                   [-10, 0, 10],
                   [-3, 0, 3]])
# Sobel_x
sobel_x = np.array([[-1, 0, 1],
                    [-2, 0, 2],
                    [-1, 0, 1]])
# Sobel_y
sobel_y = np.array([[-1, -2, -1],
                    [0, 0, 0],
                    [1, 2, 1]])
# 拉普拉斯
laplacian = np.array([[0, 1, 0],
                      [1, -4, 1],
                      [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', \
               'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z) + 1) for z in fft_shift]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(mag_spectrum[i], cmap='gray')
    plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])

plt.show()

参考

  • https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.html#fourier-transform

总结

到此这篇关于OpenCV图像变换之傅里叶变换的文章就介绍到这了,更多相关OpenCV图像变换傅里叶变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python获取Linux系统下的本机IP地址代码分享
Nov 07 Python
python映射列表实例分析
Jan 26 Python
Python线性方程组求解运算示例
Jan 17 Python
Python打印“菱形”星号代码方法
Feb 05 Python
Python3.4学习笔记之常用操作符,条件分支和循环用法示例
Mar 01 Python
解决Python3 抓取微信账单信息问题
Jul 19 Python
python 字典的打印实现
Sep 26 Python
python函数声明和调用定义及原理详解
Dec 02 Python
python常用运维脚本实例小结
Feb 14 Python
python线程池 ThreadPoolExecutor 的用法示例
Oct 10 Python
详解selenium + chromedriver 被反爬的解决方法
Oct 28 Python
C++和python实现阿姆斯特朗数字查找实例代码
Dec 07 Python
Python类方法总结讲解
pandas数值排序的实现实例
Jul 25 #Python
python非标准时间的转换
Jul 25 #Python
OpenCV 图像梯度的实现方法
Jul 25 #Python
ROS系统将python包编译为可执行文件的简单步骤
Jul 25 #Python
Pandas自定义选项option设置
Jul 25 #Python
Pandas 稀疏数据结构的实现
Jul 25 #Python
You might like
人族 Terran 魔法与科技
2020/03/14 星际争霸
ThinkPHP自动验证失败的解决方法
2011/06/09 PHP
PHP禁止页面缓存的代码
2011/10/23 PHP
详解yii2使用多个数据库的案例
2017/06/16 PHP
Thinkphp5+plupload实现的图片上传功能示例【支持实时预览】
2019/05/08 PHP
JQuery制作的放大效果的popup对话框(未添加任何jquery plugin)分享
2013/04/28 Javascript
js常用系统函数用法实例分析
2015/01/12 Javascript
百度UEditor编辑器如何关闭抓取远程图片功能
2015/03/03 Javascript
jQuery使用animate创建动画用法实例
2015/08/07 Javascript
基于JavaScript实现网页倒计时自动跳转代码
2015/12/28 Javascript
实例讲解避免javascript冲突的方法
2016/01/03 Javascript
教你用javascript实现随机标签云效果_附代码
2016/03/16 Javascript
jQuery插件uploadify实现ajax效果的图片上传
2016/06/18 Javascript
Javascript OOP之面向对象
2016/07/31 Javascript
JS实现数组按升序及降序排列的方法
2017/04/26 Javascript
xmlplus组件设计系列之文本框(TextBox)(3)
2017/05/03 Javascript
jQuery插件select2利用ajax高效查询大数据列表(可搜索、可分页)
2017/05/19 jQuery
js正则表达式校验指定字符串的方法
2018/07/23 Javascript
vue-image-crop基于Vue的移动端图片裁剪组件示例
2018/08/28 Javascript
JS图片懒加载技术实现过程解析
2020/07/27 Javascript
python用BeautifulSoup库简单爬虫实例分析
2018/07/30 Python
python读取和保存图片5种方法对比
2018/09/12 Python
Python 格式化打印json数据方法(展开状态)
2020/02/27 Python
Python-jenkins模块获取jobs的执行状态操作
2020/05/12 Python
微信html5页面调用第三方位置导航的示例
2018/03/14 HTML / CSS
法国家具及室内配件店:home24
2017/01/21 全球购物
马来西亚最大的电器网站:Senheng
2017/10/13 全球购物
世界上获奖最多的手机镜头:Olloclip
2018/03/03 全球购物
纽约香氛品牌:NEST Fragrance
2018/10/15 全球购物
产品质量承诺书范文
2014/03/27 职场文书
应届毕业生自荐信
2014/05/28 职场文书
人与自然的观后感
2015/06/18 职场文书
大学生志愿者心得体会
2016/01/15 职场文书
微信小程序实现拍照和相册选取图片
2021/05/09 Javascript
vue使用element-ui按需引入
2022/05/20 Vue.js
centos环境下nginx高可用集群的搭建指南
2022/07/23 Servers