OpenCV图像变换之傅里叶变换的一些应用


Posted in Python onJuly 26, 2021

前言

这篇博客将介绍OpenCV中的图像变换,包括用Numpy、OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用;

2D Discrete Fourier Transform (DFT)二维离散傅里叶变换
Fast Fourier Transform (FFT) 快速傅里叶变换

傅立叶变换用于分析各种滤波器的频率特性。对于图像采用二维离散傅立叶变换(DFT)求频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。

OpenCV使用cv2.dft()、cv2.idft() 实现傅里叶变换,效率更高一些(比OpenCV快3倍)

Numpy使用np.ifft2() 、np.fft.ifftshift() 实现傅里叶变换,使用更友好一些;

1. 效果图

灰度图 VS 傅里叶变换效果图如下:

可以看到白色区域大多在中心,显示低频率的内容比较多。

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉低频内容后效果图如下:

可以看到使用矩形滤波后,效果并不好,有波纹的振铃效果;用高斯滤波能好点;

OpenCV图像变换之傅里叶变换的一些应用

傅里叶变换去掉高频内容后效果图如下:

删除图像中的高频内容,即将LPF应用于图像,它实际上模糊了图像。

OpenCV图像变换之傅里叶变换的一些应用

各滤波器是 HPF(High Pass Filter)还是 LPF(Low Pass Filter),一目了然:

拉普拉斯是高频滤波器;

OpenCV图像变换之傅里叶变换的一些应用

2. 原理

  • DFT的性能优化:在一定的阵列尺寸下,DFT计算的性能较好。当数组大小为2的幂时,速度最快。大小为2、3和5的乘积的数组也可以非常有效地处理。

为达到最佳性能,可以通过OpenCV提供的函数cv2.getOptimalDFTSize() 寻找最佳尺寸。
然后将图像填充成最佳性能大小的阵列,对于OpenCV,必须手动填充零。但是对于Numpy,可以指定FFT计算的新大小,会自动填充零。

通过使用最优阵列,基本能提升4倍的效率。而OpenCV本身比Numpy效率快近3倍;

拉普拉斯是高通滤波器(High Pass Filter)

3. 源码

3.1 Numpy实现傅里叶变换

# 傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)

# 使用Numpy实现傅里叶变换:fft包
# fft.fft2() 进行频率变换
# 参数1:输入图像的灰度图
# 参数2:>输入图像 用0填充;  <输入图像 剪切输入图像; 不传递 返回输入图像
f = np.fft.fft2(img)

# 一旦得到结果,零频率分量(直流分量)将出现在左上角。
# 如果要将其置于中心,则需要使用np.fft.fftshift()将结果在两个方向上移动。
# 一旦找到了频率变换,就能找到幅度谱。
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

# 找到了频率变换,就可以进行高通滤波和重建图像,也就是求逆DFT
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
fshift[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 图像渐变章节学习到:高通滤波是一种边缘检测操作。这也表明大部分图像数据存在于频谱的低频区域。
# 仔细观察结果可以看到最后一张用JET颜色显示的图像,有一些瑕疵(它显示了一些波纹状的结构,这就是所谓的振铃效应。)
# 这是由于用矩形窗口mask造成的,掩码mask被转换为sinc形状,从而导致此问题。所以矩形窗口不用于过滤,更好的选择是高斯mask。)
plt.subplot(131), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_back, cmap='gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])

plt.show()

3.2 OpenCV实现傅里叶变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym3.jpg', 0)
rows, cols = img.shape
print(rows, cols)

# 计算DFT效率最佳的尺寸
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print(nrows, ncols)

nimg = np.zeros((nrows, ncols))
nimg[:rows, :cols] = img
img = nimg

# OpenCV计算快速傅里叶变换,输入图像应首先转换为np.float32,然后使用函数cv2.dft()和cv2.idft()。
# 返回结果与Numpy相同,但有两个通道。第一个通道为有结果的实部,第二个通道为有结果的虚部。
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

rows, cols = img.shape
crow, ccol = rows // 2, cols // 2

# 首先创建一个mask,中心正方形为1,其他均为0
# 如何删除图像中的高频内容,即我们将LPF应用于图像。它实际上模糊了图像。
# 为此首先创建一个在低频时具有高值的掩码,即传递LF内容,在HF区域为0。
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 应用掩码Mask和求逆DTF
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

3.3 HPF or LPF?

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 简单的均值滤波
mean_filter = np.ones((3, 3))

# 构建高斯滤波
x = cv2.getGaussianKernel(5, 10)
gaussian = x * x.T

# 不同的边缘检测算法Scharr-x方向
scharr = np.array([[-3, 0, 3],
                   [-10, 0, 10],
                   [-3, 0, 3]])
# Sobel_x
sobel_x = np.array([[-1, 0, 1],
                    [-2, 0, 2],
                    [-1, 0, 1]])
# Sobel_y
sobel_y = np.array([[-1, -2, -1],
                    [0, 0, 0],
                    [1, 2, 1]])
# 拉普拉斯
laplacian = np.array([[0, 1, 0],
                      [1, -4, 1],
                      [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', \
               'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z) + 1) for z in fft_shift]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(mag_spectrum[i], cmap='gray')
    plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])

plt.show()

参考

  • https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.html#fourier-transform

总结

到此这篇关于OpenCV图像变换之傅里叶变换的文章就介绍到这了,更多相关OpenCV图像变换傅里叶变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python基于opencv的图像压缩算法实例分析
May 03 Python
用Python配平化学方程式的方法
Jul 20 Python
pycharm 安装JPype的教程
Aug 08 Python
python 中xpath爬虫实例详解
Aug 26 Python
Python使用ElementTree美化XML格式的操作
Mar 06 Python
python属于解释型语言么
Jun 15 Python
python怎么判断素数
Jul 01 Python
Python字符串对齐方法使用(ljust()、rjust()和center())
Apr 26 Python
Python基础教程,Python入门教程(超详细)
Jun 24 Python
python Tkinter模块使用方法详解
Apr 07 Python
python井字棋游戏实现人机对战
Apr 28 Python
Python实现Matplotlib,Seaborn动态数据图
May 06 Python
Python类方法总结讲解
pandas数值排序的实现实例
Jul 25 #Python
python非标准时间的转换
Jul 25 #Python
OpenCV 图像梯度的实现方法
Jul 25 #Python
ROS系统将python包编译为可执行文件的简单步骤
Jul 25 #Python
Pandas自定义选项option设置
Jul 25 #Python
Pandas 稀疏数据结构的实现
Jul 25 #Python
You might like
PHP输出控制功能在简繁体转换中的应用
2006/10/09 PHP
PHP中函数rand和mt_rand的区别比较
2012/12/26 PHP
php中的PHP_EOL换行符详细解析
2013/10/26 PHP
获取任意Html元素与body之间的偏移距离 offsetTop、offsetLeft (For:IE5+ FF1 )[
2006/12/22 Javascript
在IE中调用javascript打开Excel的代码(downmoon原作)
2007/04/02 Javascript
javascript显示隐藏层比较不错的方法分析
2008/09/30 Javascript
JavaScript 联动的无限级封装类,数据采用非Ajax方式,随意添加联动
2010/06/29 Javascript
Jquery ThickBox插件使用心得(不建议使用)
2010/09/08 Javascript
ASP.NET jQuery 实例14 在ASP.NET form中校验时间范围
2012/02/03 Javascript
cument.execCommand()用法深入理解
2012/12/04 Javascript
jQuery学习笔记之总体架构
2014/06/03 Javascript
javascript验证身份证号
2015/03/03 Javascript
JAVA四种基本排序方法实例总结
2015/07/24 Javascript
javascript封装简单实现方法
2015/08/11 Javascript
轻松5句话解决JavaScript的作用域
2016/07/15 Javascript
关于Iframe父页面与子页面之间的相互调用
2016/11/22 Javascript
微信小程序 五星评分(包括半颗星评分)实例代码
2016/12/14 Javascript
Bootstrap下拉菜单Dropdowns的实现代码
2017/03/17 Javascript
实现图片首尾平滑轮播(JS原生方法—节流)
2017/10/17 Javascript
如何将你的AngularJS1.x应用迁移至React的方法
2018/02/01 Javascript
微信小程序 MinUI组件库系列之badge徽章组件示例
2018/08/20 Javascript
讲解Python中for循环下的索引变量的作用域
2015/04/15 Python
Python编程之变量赋值操作实例分析
2017/07/24 Python
Python使用SQLite和Excel操作进行数据分析
2018/01/20 Python
Python常见字符串操作函数小结【split()、join()、strip()】
2018/02/02 Python
解决Pycharm后台indexing导致不能run的问题
2019/06/27 Python
Python 分享10个PyCharm技巧
2019/07/13 Python
美国眼镜网站:EyeBuyDirect
2017/04/13 全球购物
英国最大的海报商店:GB Posters
2018/03/20 全球购物
电子信息毕业生自荐信
2013/11/16 职场文书
村委会主任先进事迹
2014/01/15 职场文书
年终考核评语
2014/01/19 职场文书
采购部长岗位职责
2014/06/13 职场文书
2015年百日安全活动总结
2015/03/26 职场文书
2016新年致辞
2015/08/01 职场文书
《进击的巨人》新联动CM 兵长强势出击兽巨人
2022/04/05 日漫