Numpy的简单用法小结


Posted in Python onAugust 28, 2019

Numpy的简单用法,下面就一起来了解一下

import numpy as np

一、创建ndarray对象

列表转换成ndarray:

>>> a = [1,2,3,4,5]
>>> np.array(a)
array([1, 2, 3, 4, 5])

取随机浮点数

>>> np.random.rand(3, 4)
array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ],
    [ 0.66729648, 0.86538771, 0.32621889, 0.07709784],
    [ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])

取随机整数

>>> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
    [3, 4, 4, 4],
    [4, 4, 4, 3]])

取零

>>> np.zeros((3,4))
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

取一

>>> np.ones((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取空(最好别用,了解一下,版本不同返回值不一样)

>>> np.empty((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取整数零或一

>>> np.ones((3,4),int)
array([[1, 1, 1, 1],
    [1, 1, 1, 1],
    [1, 1, 1, 1]])

>>> np.zeros((3,4),int)
array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])

仿range命令创建ndarray:

>>> np.arange(2,10,2) # 开始,结束,步长
array([2, 4, 6, 8])

二、ndarray属性的查看和操作:

看ndarray属性:

>>> a = [[1,2,3,4,5],[6,7,8,9,0]]
>>> b = np.array(a)
>>> b.ndim #维度个数(看几维)
2
>>> b.shape #维度大小(看具体长宽)
(5,2)
>>>b.dtype
dtype('int32')

ndarray创建时指定属性:

>>> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1., 2., 3., 4., 5.])

>>> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])

属性强转:

>>> a = np.array([1,2,3,4,5],dtype=np.float64)
>>> a
array([ 1., 2., 3., 4., 5.])

>>> a.astype(np.int32)
 array([1, 2, 3, 4, 5])

三、简单操作:

批量运算:

>>> a = np.array([1,2,3,4,5],dtype=np.int32)
>>> a
array([1, 2, 3, 4, 5])

>>> a + a
array([ 2, 4, 6, 8, 10])

>>> a * a
array([ 1, 4, 9, 16, 25])

>>> a - 2
array([-1, 0, 1, 2, 3])

>>> a / 2
array([ 0.5, 1. , 1.5, 2. , 2.5])

#等等

改变维度:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.reshape((5,2))
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])

矩阵转换(和改变维度有本质区别,仔细):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.transpose()
array([[1, 6],
    [2, 7],
    [3, 8],
    [4, 9],
    [5, 0]])

打乱(只能打乱一维):

>>> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
>>> a
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])
    
>>> np.random.shuffle(a)
>>> a
array([[9, 0],
    [1, 2],
    [7, 8],
    [5, 6],
    [3, 4]])

四、切片和索引:

一维数组(和普通列表一样):

>>> a = np.array(range(10))
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a[3]
3

>>> a[2:9:2]
array([2, 4, 6, 8])

多维数组(也差不了多少):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a[:, 1:4]
array([[ 2, 3, 4],
    [ 7, 8, 9],
    [12, 13, 14]])

条件索引:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a > 5
array([[False, False, False, False, False],
    [ True, True, True, True, False],
    [ True, True, True, True, True]], dtype=bool)

>>> a[a>5]
array([ 6, 7, 8, 9, 11, 12, 13, 14, 15])

>>> a%3 == 0
Out[128]: 
array([[False, False, True, False, False],
    [ True, False, False, True, True],
    [False, True, False, False, True]], dtype=bool)

>>> a[a%3 == 0]
array([ 3, 6, 9, 0, 12, 15])

五、函数(numpy核心知识点)

计算函数(都不想举例了,太简单。。):

np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
>>> a = np.random.randn(3,4)
>>> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
    [ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
    [-0.32922342, 1.07773886, -0.27273258, 0.29474435]])

>>> np.ceil(a)   
array([[ 1., 1., -0., -1.],
    [ 1., 2., 1., 1.],
    [-0., 2., -0., 1.]])


>>> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
    [10, 10, 10, 10],
    [ 0, 10, 0, 10]])

统计函数

np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
>>> a = np.arange(12).reshape(3,4).transpose()
>>> a
array([[ 0, 4, 8],
    [ 1, 5, 9],
    [ 2, 6, 10],
    [ 3, 7, 11]])

>>> np.mean(a)
5.5

>>> np.sum(a)
66

>>> np.argmax(a)
11

>>> np.std(a)
3.4520525295346629

>>> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)

判断函数:

np.any(): 至少有一个元素满足指定条件,返回True
np.all(): 所有的元素满足指定条件,返回True
>>> a = np.random.randn(2,3)
>>> a
array([[-0.65750548, 2.24801371, -0.26593284],
    [ 0.31447911, -1.0215645 , -0.4984958 ]])

>>> np.any(a>0)
True

>>> np.all(a>0)
False

去除重复:

np.unique(): 去重
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
    [2, 3, 4]])

>>> np.unique(a)
array([1, 2, 3, 4])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python正则表达式去掉数字中的逗号(python正则匹配逗号)
Dec 25 Python
Python和Ruby中each循环引用变量问题(一个隐秘BUG?)
Jun 04 Python
Python如何获取系统iops示例代码
Sep 06 Python
python3 shelve模块的详解
Jul 08 Python
Python程序退出方式小结
Dec 09 Python
Python实现的文本对比报告生成工具示例
May 22 Python
python opencv 读取本地视频文件 修改ffmpeg的方法
Jan 26 Python
利用python实现PSO算法优化二元函数
Nov 13 Python
TensorFlow基本的常量、变量和运算操作详解
Feb 03 Python
Python面向对象程序设计之静态方法、类方法、属性方法原理与用法分析
Mar 23 Python
Spring http服务远程调用实现过程解析
Jun 11 Python
Python基于template实现字符串替换
Nov 27 Python
Python 通过截图匹配原图中的位置(opencv)实例
Aug 27 #Python
Python 转换文本编码实现解析
Aug 27 #Python
python-opencv获取二值图像轮廓及中心点坐标的代码
Aug 27 #Python
python定位xpath 节点位置的方法
Aug 27 #Python
python实现截取屏幕保存文件,删除N天前截图的例子
Aug 27 #Python
python自动化UI工具发送QQ消息的实例
Aug 27 #Python
python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法
Aug 27 #Python
You might like
使用php+xslt在windows平台上
2006/10/09 PHP
yii框架使用分页的方法分析
2019/07/25 PHP
基于jquery的拖动布局插件
2011/11/25 Javascript
JS实现遮罩层效果的简单实例
2013/11/12 Javascript
获取下拉列表框的值是数组,split,$.inArray示例
2013/11/13 Javascript
JS嵌套函数调用上下文的问题解决
2014/03/26 Javascript
JS获取当前脚本文件的绝对路径
2016/03/02 Javascript
JS中关于事件处理函数名后面是否带括号的问题
2016/11/16 Javascript
vue.js 获取当前自定义属性值
2017/06/01 Javascript
js实现随机点名小功能
2017/08/17 Javascript
在element-ui的el-tree组件中用render函数生成el-button的实例代码
2018/11/05 Javascript
详解Vue中CSS样式穿透问题
2019/09/12 Javascript
layer弹出层倒计时关闭的实现方法
2019/09/27 Javascript
python zip文件 压缩
2008/12/24 Python
python thread 并发且顺序运行示例
2009/04/09 Python
Python线程中对join方法的运用的教程
2015/04/09 Python
python中getaddrinfo()基本用法实例分析
2015/06/28 Python
Python编程实现控制cmd命令行显示颜色的方法示例
2017/08/14 Python
Python判断变量是否是None写法代码实例
2020/10/09 Python
Omio西班牙:全欧洲低价大巴、火车和航班搜索和比价
2017/02/11 全球购物
英国领先的电子、技术和办公用品购物网站:Ebuyer
2018/04/04 全球购物
班组长安全生产职责
2013/12/16 职场文书
个人求职信范文分享
2014/01/31 职场文书
投标担保书范文
2014/04/02 职场文书
保护水资源的标语
2014/06/17 职场文书
信息管理与信息系统专业求职信
2014/06/21 职场文书
合作意向书
2014/07/30 职场文书
作风整顿剖析材料
2014/09/30 职场文书
2014年销售人员工作总结
2014/11/27 职场文书
个人总结格式范文
2015/03/09 职场文书
建国大业电影观后感
2015/06/01 职场文书
科技馆观后感
2015/06/08 职场文书
学雷锋活动简报
2015/07/20 职场文书
《去年的树》教学反思
2016/02/18 职场文书
读《人生的智慧》有感:闲暇是人生的精华
2019/12/25 职场文书
Redis遍历所有key的两个命令(KEYS 和 SCAN)
2021/04/12 Redis