Python 做曲线拟合和求积分的方法


Posted in Python onDecember 29, 2018

这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目。 主要的就是首先要安装Anaconda  python库,然后来运用这些数学工具。

###最小二乘法试验###
import numpy as np
import pymysql
from scipy.optimize import leastsq
from scipy import integrate
###绘图,看拟合效果###
import matplotlib.pyplot as plt
from sympy import *
 
 
path='E:\PythonProgram\oildata.txt'
 
lieh0 =[]   #初始第一列,油管高度
liev1 =[]   #初始第二列,油枪记录的体积
 
h_median =[]  # 高度相邻中位数
h_subtract =[]   #相邻高度作差
v_subtract =[]   #相邻体积作差
select_h_subtr =[]   #筛选的高度作差 ########
select_v_subtr =[]   #筛选的体积作差
 
VdtH=[]      #筛选的V 和 t 的 倒数。
 
def loadData(Spath,lie0,lie1):
 with open(Spath,'r') as f0:
   for i in f0:
    tmp=i.split()
    lie0.append(float(tmp[0]))
    lie1.append(float(tmp[2]))
 print ("source lie0",len(lie0))
 
 
def connectMySQL():
 db = pymysql.connect(host='10.**.**.**', user='root', passwd='***', db="zabbix", charset="utf8") # 校罐
 cur = db.cursor()
 
 try:
  # 查询
  cur.execute("SELECT * FROM station_snapshot limit 10 ")
  for row in cur.fetchall():
   # print(row)
   id = row[0]
   snapshot_id = row[1]
   DateTime = row[13]
   attr1V = row[5]
   attr2H = row[6]
   print("id=%d ,snapshot_id=%s,DateTime=%s,attr1V =%s, attr2H=%s ",
     (id, snapshot_id, DateTime, attr1V, attr2H))
 except:
  print("Error: unable to fecth data of station_stock")
 
 try:
  cur.execute("SELECT * FROM can_stock limit 5");
  for row in cur.fetchall():
   # print(row)
   stockid = row[0]
   stationid = row[1]
   DateTime = row[4]
   Volume = row[5]
   Height = row[8]
   print("stockid=%d ,stationid=%s,DateTime=%s,Volume =%f, Height=%f ",
     (stockid, stationid, DateTime, Volume, Height))
 except:
  print("Error: unable to fecth data of can_snapshot")
 
 cur.close()
 db.close()
 
 
def formatData(h_med,h_subtr,v_subtr):
 lh0 = lieh0[:]
 del lh0[0]
 print("lh0 size(): ",len(lh0))
 
 lh1 =lieh0[:]
 del lh1[len(lh1)-1]
 
 print("lh1 size() : ",len(lh1))
 
 lv0 =liev1[:]
 del lv0[0]
 #print (liev1)
 print ("Souce liev1 size() : ",len(liev1))
 print ("lv1 size() :",len(lv0))
 """
 lv1 =liev1[:]
 del lv1[len(lv1)-1]
 print("lv1 size(): ",len(lv1))
 """
 h_med[:] =[(x+y)/2 for x,y in zip(lh0,lh1)]  ###采样点(Xi,Yi)###
 print("h_med size() : ", len(h_med))
 
 h_subtr[:] = [(y-x) for x,y in zip(lh0,lh1)]
 print("h_subtr size() : ", len(h_subtr))
 # v_subtr[:] = [(y-x) for x,y in zip(lv0,lv1)]
 v_subtr[:] = lv0
 print("v_subtr size() : ", len(v_subtr))
 
 
def removeBadPoint(h_med,h_sub,v_sub):
 for val in h_sub:
  position=h_sub.index(val)
  if 0.01 > val > -0.01:
   del h_sub[position]
   del h_med[position]
   del v_sub[position]
 v_dt_h_ay = [(y/x) for x, y in zip(h_sub, v_sub)]
 return v_dt_h_ay
 
 
 
def selectRightPoint(h_med,h_subtr,v_dt_h_ay):
 for val in v_dt_h_ay:
  pos = v_dt_h_ay.index(val)
  if val > 20 :
   del v_dt_h_ay[pos]
   del h_med[pos]
   del h_subtr[pos]
 for val in v_dt_h_ay:
  ptr = v_dt_h_ay.index(val)
  if val < 14:
   del v_dt_h_ay[ptr]
   del h_med[ptr]
   del h_subtr[ptr]
 
 
def writeFile(h_mp, v_dt_h):
 s='\n'.join(str(num)[1:-1] for num in h_mp)
 v='\n'.join(str(vdt)[1:-1] for vdt in v_dt_h)
 open(r'h_2.txt','w').write(s)
 open(r'v_dt_h.txt','w').write(v)
 print("write h_median: ",len(h_mp))
 # print("V_dt also is (y-x) : ",v_dt_h,end="\n")
 print("Write V_dt_h : ",len(v_dt_h))
# file=open('data.txt','w')
# file.write(str(h_mp));
# file.close
 
 
def integralCalculate(coeff,xspace):
 vCalcute =[]
 x = Symbol('x')
 a, b, c, d = coeff[0]
 y = a * x ** 3 + b * x ** 2 + c * x + d
 i=0
 while (i< len(xspace)-1) :
  m = integrate(y, (x, xspace[i], xspace[i+1]))
  vCalcute.append(abs(m))
  i=i+1
 
 print("求导结果:",vCalcute)
 print("求导长度 len(VCalcute): ",len(vCalcute))
 return vCalcute
 
 ###需要拟合的函数func及误差error###
 
def func(p,x):
 a,b,c,d=p
 return a*x**3+b*x**2+c*x+d #指明待拟合的函数的形状,设定的拟合函数。
 
def error(p,x,y):
 return func(p,x)-y #x、y都是列表,故返回值也是个列表
 
def leastSquareFitting(h_mp,v_dt_hl):
 p0=[1,2,6,10]  #a,b,c 的假设初始值,随着迭代会越来越小
 #print(error(p0,h_mp,v_dt_h,"cishu")) #目标是让error 不断减小
 #s="Test the number of iteration" #试验最小二乘法函数leastsq得调用几次error函数才能找到使得均方误差之和最小的a~c
 Para=leastsq(error,p0,args=(h_mp,v_dt_hl)) #把error函数中除了p以外的参数打包到args中
 a,b,c,d=Para[0]   #leastsq 返回的第一个值是a,b,c 的求解结果,leastsq返回类型相当于c++ 中的tuple
 print(" a=",a," b=",b," c=",c," d=",d)
 plt.figure(figsize=(8,6))
 plt.scatter(h_mp,v_dt_hl,color="red",label="Sample Point",linewidth=3) #画样本点
 x=np.linspace(200,2200,1000)
 y=a*x**3+b*x**2+c*x+d
 
 integralCalculate(Para,h_subtract)
 plt.plot(x,y,color="orange",label="Fitting Curve",linewidth=2) #画拟合曲线
 # plt.plot(h_mp, v_dt_hl,color="blue", label='Origin Line',linewidth=1) #画连接线
 plt.legend()
 plt.show()
 
def freeParameterFitting(h_mp,v_dt_hl):
 z1 = np.polyfit(h_mp, v_dt_hl, 6) # 第一个拟合,自由度为6
  # 生成多项式对象
 p1 = np.poly1d(z1)
 print("Z1:")
 print(z1)
 print("P1:")
 print(p1)
 print("\n")
 x = np.linspace(400, 1700, 1000)
 plt.plot(h_mp, v_dt_hl, color="blue", label='Origin Line', linewidth=1) # 画连接线
 plt.plot(x, p1(x), 'gv--', color="black", label='Poly Fitting Line(deg=6)', linewidth=1)
 plt.legend()
 plt.show()
 
def main():
 loadData(path, lieh0, liev1)
 connectMySQL() # 读取oildata数据库
 
 formatData(h_median, h_subtract, v_subtract)
 
 # 去除被除数为0对应的点,并得到v 和 h 求导 值的列表
 VdtH[:] = removeBadPoint(h_median, h_subtract, v_subtract)
 print("h_median1:", len(h_median))
 
 print("VdtH1 : ", len(VdtH))
 
 # 赛选数据,去除异常点
 selectRightPoint(h_median, h_subtract, VdtH)
 print("h_median2:", len(h_median))
 print("h_subtract: ", len(h_subtract))
 print("VdtH2 : ", len(VdtH))
 h_mp = np.array(h_median)
 v_dt_h = np.array(VdtH)
 
 writeFile(h_mp, v_dt_h)
 # 最小二乘法作图
 leastSquareFitting(h_mp, v_dt_h)
 # 多项式自由参数法作图
 freeParameterFitting(h_mp, v_dt_h)
 
if __name__ == '__main__':
 main()

以上这篇Python 做曲线拟合和求积分的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中super()函数简介及用法分享
Jul 11 Python
浅谈Python2获取中文文件名的编码问题
Jan 09 Python
python机器学习理论与实战(二)决策树
Jan 19 Python
python os.listdir按文件存取时间顺序列出目录的实例
Oct 21 Python
使用Scrapy爬取动态数据
Oct 21 Python
对python中dict和json的区别详解
Dec 18 Python
python三方库之requests的快速上手
Mar 04 Python
python os模块在系统管理中的应用
Jun 22 Python
Python的3种运行方式:命令行窗口、Python解释器、IDLE的实现
Oct 10 Python
python获取linux系统信息的三种方法
Oct 14 Python
Python 排序最长英文单词链(列表中前一个单词末字母是下一个单词的首字母)
Dec 14 Python
python+selenium小米商城红米K40手机自动抢购的示例代码
Mar 24 Python
python 画三维图像 曲面图和散点图的示例
Dec 29 #Python
python实现三维拟合的方法
Dec 29 #Python
Django数据库连接丢失问题的解决方法
Dec 29 #Python
Python Cookie 读取和保存方法
Dec 28 #Python
Python编程flask使用页面模版的方法
Dec 28 #Python
Python编程中flask的简介与简单使用
Dec 28 #Python
Python3 Post登录并且保存cookie登录其他页面的方法
Dec 28 #Python
You might like
JAVA/JSP学习系列之四
2006/10/09 PHP
PHP实现MySQL更新记录的代码
2008/06/07 PHP
PHP生成随机密码类分享
2014/06/25 PHP
php获取数组元素中头一个数组元素值的实现方法
2014/12/20 PHP
Yii2中cookie用法示例分析
2016/07/18 PHP
PHP使用反向Ajax技术实现在线客服系统详解
2019/07/01 PHP
JavaScript基本概念初级讲解论坛贴的学习记录
2009/02/22 Javascript
JS 控制非法字符的输入代码
2009/12/04 Javascript
JS面向对象编程之对象使用分析
2010/08/19 Javascript
jQuery之浮动窗口实现代码(两种方法)
2010/09/08 Javascript
基于JQuery 滑动与动画的说明介绍
2013/04/18 Javascript
JavaScript检查弹出窗口是否被阻拦的方法技巧
2015/03/13 Javascript
JavaScript获取页面中第一个锚定文本的方法
2015/04/03 Javascript
Bootstrap模态窗口源码解析
2017/02/08 Javascript
微信小程序 基础组件与导航组件详细介绍
2017/02/21 Javascript
你有必要知道的10个JavaScript难点
2017/07/25 Javascript
node+koa2+mysql+bootstrap搭建一个前端论坛
2018/05/06 Javascript
js全屏事件fullscreenchange 实现全屏、退出全屏操作
2019/09/17 Javascript
NodeJs crypto加密制作token的实现代码
2019/11/15 NodeJs
[00:53]TI3正赛第三天 DK怒破A队不败金身 现场国旗飘扬热血激昂
2013/08/10 DOTA
[00:59]PWL开团时刻DAY7——我在赶
2020/11/06 DOTA
[01:18:45]DOTA2-DPC中国联赛 正赛 DLG vs Dragon BO3 第三场2月1日
2021/03/11 DOTA
Python脚本实现DNSPod DNS动态解析域名
2015/02/14 Python
详解python3实现的web端json通信协议
2016/12/29 Python
Python数据结构与算法之链表定义与用法实例详解【单链表、循环链表】
2017/09/28 Python
浅谈Pycharm中的Python Console与Terminal
2019/01/17 Python
Pandas实现DataFrame按行求百分数(比例数)
2019/12/27 Python
Python操作Excel把数据分给sheet
2020/05/20 Python
Python实例教程之检索输出月份日历表
2020/12/16 Python
使用canvas对多图片拼合并导出图片的方法
2018/08/28 HTML / CSS
秘鲁购物网站:Linio秘鲁
2017/04/07 全球购物
朗仕(Lab series)英国官网:雅诗兰黛集团男士专属护肤品牌
2017/11/28 全球购物
杭州SQL浙江浙大网新恩普软件有限公司
2013/07/27 面试题
数控技术应届生求职信
2013/11/13 职场文书
教师遵守党的政治纪律情况对照检查材料
2014/09/26 职场文书
高中英语教学反思范文
2016/03/02 职场文书