python实现决策树分类算法


Posted in Python onDecember 21, 2017

本文实例为大家分享了python实现决策树分类算法的具体代码,供大家参考,具体内容如下

1、概述

决策树(decision tree)——是一种被广泛使用的分类算法。

相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置

在实际应用中,对于探测式的知识发现,决策树更加适用。

2、算法思想

通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

      女儿:多大年纪了?

      母亲:26。

      女儿:长的帅不帅?

      母亲:挺帅的。

      女儿:收入高不?

      母亲:不算很高,中等情况。

      女儿:是公务员不?

      母亲:是,在税务局上班呢。

      女儿:那好,我去见见。 

这个女孩的决策过程就是典型的分类树决策。

实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见

假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

python实现决策树分类算法

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中:

◊绿色节点表示判断条件

◊橙色节点表示决策结果

◊箭头表示在一个判断条件在不同情况下的决策路径

图中红色箭头表示了上面例子中女孩的决策过程。 

这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 

决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 

决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

3、决策树构造

假如有以下判断苹果好坏的数据样本:

样本    红     大      好苹果

0         1      1         1

1         1      0         1

2         0      1         0

3         0      0         0

样本中有2个属性,A0表示是否红苹果。A1表示是否大苹果。假如要根据这个数据样本构建一棵自动判断苹果好坏的决策树。

由于本例中的数据只有2个属性,因此,我们可以穷举所有可能构造出来的决策树,就2棵,如下图所示:

python实现决策树分类算法

显然左边先使用A0(红色)做划分依据的决策树要优于右边用A1(大小)做划分依据的决策树。

当然这是直觉的认知。而直觉显然不适合转化成程序的实现,所以需要有一种定量的考察来评价这两棵树的性能好坏。

决策树的评价所用的定量考察方法为计算每种划分情况的信息熵增益

如果经过某个选定的属性进行数据划分后的信息熵下降最多,则这个划分属性是最优选择 

属性划分选择(即构造决策树)的依据:

简单来说,熵就是“无序,混乱”的程度。

通过计算来理解:

1、原始样本数据的熵:

样例总数:4

好苹果:2

坏苹果:2

熵: -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1

信息熵为1表示当前处于最混乱,最无序的状态。

2、两颗决策树的划分结果熵增益计算

树1先选A0作划分,各子节点信息熵计算如下:

0,1叶子节点有2个正例,0个负例。信息熵为:e1 = -(2/2 * log(2/2) + 0/2 * log(0/2)) = 0。

2,3叶子节点有0个正例,2个负例。信息熵为:e2 = -(0/2 * log(0/2) + 2/2 * log(2/2)) = 0。

因此选择A0划分后的信息熵为每个子节点的信息熵所占比重的加权和:E = e1*2/4 + e2*2/4 = 0。

选择A0做划分的信息熵增益G(S, A0)=S - E = 1 - 0 = 1.

事实上,决策树叶子节点表示已经都属于相同类别,因此信息熵一定为0。 

树2先选A1作划分,各子节点信息熵计算如下:

0,2子节点有1个正例,1个负例。信息熵为:e1 = -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1。

1,3子节点有1个正例,1个负例。信息熵为:e2 = -(1/2 * log(1/2) + 1/2 * log(1/2)) = 1。

因此选择A1划分后的信息熵为每个子节点的信息熵所占比重的加权和:E = e1*2/4 + e2*2/4 = 1。也就是说分了跟没分一样!

选择A1做划分的信息熵增益G(S, A1)=S - E = 1 - 1 = 0. 

因此,每次划分之前,我们只需要计算出信息熵增益最大的那种划分即可。

先做A0划分时的信息熵增益为1>先做A1划分时的信息熵增益,所以先做A0划分是最优选择!!!

4、算法指导思想

经过决策属性的划分后,数据的无序度越来越低,也就是信息熵越来越小 

5、算法实现

梳理出数据中的属性

比较按照某特定属性划分后的数据的信息熵增益,选择信息熵增益最大的那个属性作为第一划分依据,然后继续选择第二属性,以此类推

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现将汉字转换成汉语拼音的库
May 05 Python
Python3实现将文件归档到zip文件及从zip文件中读取数据的方法
May 22 Python
Python通过RabbitMQ服务器实现交换机功能的实例教程
Jun 29 Python
python直接访问私有属性的简单方法
Jul 25 Python
Python正则简单实例分析
Mar 21 Python
python正则表达式面试题解答
Apr 28 Python
python实现微信发送邮件关闭电脑功能
Feb 22 Python
python3实现随机数
Jun 25 Python
Python实现的排列组合、破解密码算法示例
Apr 12 Python
TensorFlow实现模型断点训练,checkpoint模型载入方式
May 26 Python
python实现简单的五子棋游戏
Sep 01 Python
Python尝试实现蒙特卡罗模拟期权定价
Apr 21 Python
Python语言描述机器学习之Logistic回归算法
Dec 21 #Python
python Crypto模块的安装与使用方法
Dec 21 #Python
python编写Logistic逻辑回归
Dec 30 #Python
python+selenium识别验证码并登录的示例代码
Dec 21 #Python
python实现随机森林random forest的原理及方法
Dec 21 #Python
python编写分类决策树的代码
Dec 21 #Python
Python基于PyGraphics包实现图片截取功能的方法
Dec 21 #Python
You might like
PHP面向对象分析设计的61条军规小结
2010/07/17 PHP
php is_executable判断给定文件名是否可执行实例
2016/09/26 PHP
js下用gb2312编码解码实现方法
2009/12/31 Javascript
js获取 type=radio 值的方法
2014/05/09 Javascript
超级给力的JavaScript的React框架入门教程
2015/07/02 Javascript
基于bootstrap3和jquery的分页插件
2015/07/31 Javascript
JS工作中的小贴士之”闭包“与事件委托的”阻止冒泡“
2016/06/16 Javascript
jQuery插件imgAreaSelect基础讲解
2017/05/26 jQuery
js实现鼠标拖拽多选功能示例
2017/08/01 Javascript
Angular2 组件交互实例详解
2017/08/24 Javascript
利用Angular2 + Ionic3开发IOS应用实例教程
2018/01/15 Javascript
Nodejs处理异常操作示例
2018/12/25 NodeJs
如何封装了一个vue移动端下拉加载下一页数据的组件
2019/01/06 Javascript
利用angular自动编译andriod APK的绕坑经历分享
2019/03/08 Javascript
抖音上用记事本编写爱心小程序教程
2019/04/17 Javascript
浅析vue中的provide / inject 有什么用处
2019/11/10 Javascript
微信小程序中网络请求缓存的解决方法
2019/12/29 Javascript
python2.7到3.x迁移指南
2018/02/01 Python
对python3 urllib包与http包的使用详解
2018/05/10 Python
对Python+opencv将图片生成视频的实例详解
2019/01/08 Python
详解pyppeteer(python版puppeteer)基本使用
2019/06/12 Python
ZABBIX3.2使用python脚本实现监控报表的方法
2019/07/02 Python
numpy求平均值的维度设定的例子
2019/08/24 Python
python飞机大战pygame碰撞检测实现方法分析
2019/12/17 Python
如何使用python socket模块实现简单的文件下载
2020/09/04 Python
Python字符串查找基本操作代码案例
2020/10/27 Python
CSS3制作翻转效果_动力节点Java学院整理
2017/07/11 HTML / CSS
移动端rem布局的两种实现方法
2018/01/03 HTML / CSS
护理专业个人求职简历的自我评价
2013/10/13 职场文书
半年思想汇报
2013/12/30 职场文书
搞笑创意广告语
2014/03/17 职场文书
基层党员对照检查材料
2014/08/25 职场文书
学习党的群众路线教育实践活动心得体会范文
2014/11/03 职场文书
2014年纪检部工作总结
2014/11/12 职场文书
营销计划书范文
2015/01/17 职场文书
幼儿园老师新年寄语
2015/08/17 职场文书