在Python下尝试多线程编程


Posted in Python onApril 28, 2015

多任务可以由多进程完成,也可以由一个进程内的多线程完成。

我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。

由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程。

Python的标准库提供了两个模块:thread和threading,thread是低级模块,threading是高级模块,对thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:

import time, threading

# 新线程执行的代码:
def loop():
  print 'thread %s is running...' % threading.current_thread().name
  n = 0
  while n < 5:
    n = n + 1
    print 'thread %s >>> %s' % (threading.current_thread().name, n)
    time.sleep(1)
  print 'thread %s ended.' % threading.current_thread().name

print 'thread %s is running...' % threading.current_thread().name
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print 'thread %s ended.' % threading.current_thread().name

执行结果如下:

thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.

由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……
Lock

多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

来看看多个线程同时操作一个变量怎么把内容给改乱了:

import time, threading

 
# 假定这是你的银行存款:
balance = 0

def change_it(n):
  # 先存后取,结果应该为0:
  global balance
  balance = balance + n
  balance = balance - n

def run_thread(n):
  for i in range(100000):
    change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print balance

我们定义了一个共享变量balance,初始值为0,并且启动两个线程,先存后取,理论上结果应该为0,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。

原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:

balance = balance + n

也分两步:

  1.     计算balance + n,存入临时变量中;
  2.     将临时变量的值赋给balance。

也就是可以看成:

x = balance + n
balance = x

由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1   # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1   # balance = 0

t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2   # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2   # balance = 0

结果 balance = 0

但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5

t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2   # balance = 8

t1: balance = x1   # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1   # balance = 0

t2: x2 = balance - 5 # x2 = 0 - 5 = -5
t2: balance = x2   # balance = -5

结果 balance = -5

究其原因,是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

两个线程同时一存一取,就可能导致余额不对,你肯定不希望你的银行存款莫名其妙地变成了负数,所以,我们必须确保一个线程在修改balance的时候,别的线程一定不能改。

如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:

balance = 0
lock = threading.Lock()

def run_thread(n):
  for i in range(100000):
    # 先要获取锁:
    lock.acquire()
    try:
      # 放心地改吧:
      change_it(n)
    finally:
      # 改完了一定要释放锁:
      lock.release()

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try...finally来确保锁一定会被释放。

锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。
多核CPU

如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。

如果写一个死循环的话,会出现什么情况呢?

打开Mac OS X的Activity Monitor,或者Windows的Task Manager,都可以监控某个进程的CPU使用率。

我们可以监控到一个死循环线程会100%占用一个CPU。

如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。

要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。

试试用Python写个死循环:

import threading, multiprocessing

def loop():
  x = 0
  while True:
    x = x ^ 1

for i in range(multiprocessing.cpu_count()):
  t = threading.Thread(target=loop)
  t.start()

启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有160%,也就是使用不到两核。

即使启动100个线程,使用率也就170%左右,仍然不到两核。

但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?

因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。
小结

多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。

Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

 

Python 相关文章推荐
TensorFlow模型保存和提取的方法
Mar 08 Python
python爬虫自动创建文件夹的功能
Aug 01 Python
Python面向对象总结及类与正则表达式详解
Apr 18 Python
不到40行代码用Python实现一个简单的推荐系统
May 10 Python
python整合ffmpeg实现视频文件的批量转换
May 31 Python
Python实现简单的列表冒泡排序和反转列表操作示例
Jul 10 Python
详解Python并发编程之从性能角度来初探并发编程
Aug 23 Python
python调用HEG工具批量处理MODIS数据的方法及注意事项
Feb 18 Python
pyMySQL SQL语句传参问题,单个参数或多个参数说明
Jun 06 Python
Python列表的深复制和浅复制示例详解
Feb 12 Python
python3.9之你应该知道的新特性详解
Apr 29 Python
端午节将至,用Python爬取粽子数据并可视化,看看网友喜欢哪种粽子吧!
Jun 11 Python
Python输出PowerPoint(ppt)文件中全部文字信息的方法
Apr 28 #Python
python使用append合并两个数组的方法
Apr 28 #Python
python实现的简单文本类游戏实例
Apr 28 #Python
初步解析Python下的多进程编程
Apr 28 #Python
python实现将pvr格式转换成pvr.ccz的方法
Apr 28 #Python
简单介绍Python中的JSON使用
Apr 28 #Python
浅析Python中的序列化存储的方法
Apr 28 #Python
You might like
星际争霸任务指南——人族
2020/03/04 星际争霸
PHP面向对象的进阶学习(抽像类、接口、final、类常量)
2012/05/07 PHP
php中使用getimagesize获取图片、flash等文件的尺寸信息实例
2014/04/29 PHP
destoon二次开发常用数据库操作
2014/06/21 PHP
php使用GeoIP库实例
2014/06/27 PHP
YII Framework框架教程之缓存用法详解
2016/03/14 PHP
详解PHP swoole process的使用方法
2017/08/26 PHP
Laravel 集成 Geetest验证码的方法
2018/05/14 PHP
用js自动判断浏览器分辨率的代码
2007/01/28 Javascript
open 动态修改img的onclick事件示例代码
2013/11/13 Javascript
js中switch case循环实例代码
2013/12/30 Javascript
JS和函数式语言的三特性
2014/03/05 Javascript
jquery获取一个元素下面相同子元素的个数代码
2014/07/31 Javascript
js+html5实现canvas绘制圆形图案的方法
2015/06/05 Javascript
微信小程序 教程之事件
2016/10/18 Javascript
JS正则表达式之非捕获分组用法实例分析
2016/12/28 Javascript
JS调用Android、Ios原生控件
2017/01/06 Javascript
微信小程序 wx.login解密出现乱码的问题解决办法
2017/03/10 Javascript
非常实用的vue导航钩子
2017/03/20 Javascript
angularjs1.5 组件内用函数向外传值的实例
2018/09/30 Javascript
JS实现的贪吃蛇游戏案例详解
2019/05/01 Javascript
javascript单张多张图无缝滚动实例代码
2020/05/10 Javascript
8个非常实用的Vue自定义指令
2020/12/15 Vue.js
OPENCV去除小连通区域,去除孔洞的实例讲解
2018/06/21 Python
Python 16进制与中文相互转换的实现方法
2018/07/09 Python
美国性感内衣店:Yandy
2018/06/12 全球购物
Hotels.com越南:酒店预订
2019/10/29 全球购物
Linux操作面试题
2012/05/16 面试题
护士毕业自我鉴定
2014/02/07 职场文书
高三毕业寄语
2014/04/10 职场文书
保洁员岗位职责
2015/02/04 职场文书
心灵捕手观后感
2015/06/02 职场文书
python - asyncio异步编程
2021/04/06 Python
MySQL系列之二 多实例配置
2021/07/02 MySQL
php png失真的原因及解决办法
2021/11/17 PHP
Python基本的内置数据类型及使用方法
2022/04/13 Python