Python列表删除重复元素与图像相似度判断及删除实例代码


Posted in Python onMay 07, 2021

发现问题

项目需要,需要删除文件夹中的冗余图片。涉及图像文件名的操作,图像文件名存储在list中

python list删除元素有remove()和pop(),remove()对元素进行操作,pop()对索引进行操作,并会返回pop掉的值。一个只会从列表移除一个数

一.如果已经有了一个列表l,令h=l,对l操作时同时会影响h,貌似原因是内存共享的,正确的方法是h=l.copy()

二.测试时,发现一个问题,如下面代码和结果:

Python列表删除重复元素与图像相似度判断及删除实例代码Python列表删除重复元素与图像相似度判断及删除实例代码

item=2时,并没有把2全部删掉,后面重复的3也没有删去。

**查阅一些资料后发现:list的遍历是基于下标的不是基于元素,你删掉一个元素后,列表就发生了变化,所有的元素都往前移动了一个位置,假设要删除重的2,一个列表中索引为4,对应的值为2,索引为5,对应的值为2,索引为6,对应的值为3,当前循环删掉索引4时对应的值2之后,索引4的值为2,索引5,值为3,下一次循环,本来要再删一个2,但此时索引为5对应的为3,就漏掉了一个2。

解决方案:

(1)倒序循环遍历:

Python列表删除重复元素与图像相似度判断及删除实例代码Python列表删除重复元素与图像相似度判断及删除实例代码

(2)实际用的方法,判断到重复元素后,将那个item复制为0或‘0',相当于用一个标识符占住重复元素的位置,循环时先判断是否为‘0',最后通过

list = list(set(list))

list.remove('0')

即可

附图像去冗余算法,判断图像相似通过,感知哈希算法和三通道直方图,及图像尺寸

from img_similarity import runtwoImageSimilaryFun
import os
from PIL import Image
import shutil
import time
import numpy as np
 
def similar(path1, path2):
    img1 = Image.open(path1)
    img2 = Image.open(path2)
    w1 = img1.size[0] # 图片的宽
    h1 = img2.size[1]  # 图片的高
    w2 = img2.size[0] # 图片的宽
    h2 = img2.size[1]  # 图片的高
    w_err = abs(w1 - w2)/w1
    h_err = abs(h1 - h2)/h1
    if w_err > 0.1 or h_err >0.1:
        return 0
    else:
        phash, color_hist = runtwoImageSimilaryFun(path1, path2)
        if phash <=8 or color_hist >=0.9:
            return 1
        else:
            return 0
 
 
path = './crop_img'
result_imgdirs_path = './removed_repeat_img'
folderlist = os.listdir(path)
folderlist.sort()
for item in folderlist:
    folder_path = path + '/' + item
    new_folder_path = result_imgdirs_path + '/' + item
    os.makedirs(new_folder_path)
 
    imglist = os.listdir(folder_path)
    imglist.sort()
 
    time_start = time.time()
 
    for i,item1 in enumerate(imglist):
        if item1 == '0':
            continue
        path1 = folder_path + '/' + item1
        for j, item2 in enumerate(imglist[i + 1:]):
            if item2 == '0':
                continue
            path2 = folder_path + '/' + item2
            t = similar(path1, path2)
            if t:
                #将判断为相似的图片在trans_list中的名字置‘0',代表不需要复制
                imglist[i+j+1] = '0'
 
    imglist = list(set(imglist))
    imglist.remove('0')
 
    time_end = time.time()
    time_c = time_end - time_start
    print('{} similarity judgement list time cost {}s'.format(item, time_c))
 
 
    time_start = time.time()
    #移动图片
    for item3 in imglist:
        ori_img_path = folder_path + '/' + item3
        new_img_path = new_folder_path + '/' + item3
        shutil.copy(ori_img_path, new_img_path)
 
    time_end = time.time()
    time_c = time_end - time_start # 运行所花时间
    print('{} move image time cost {}s'.format(item, time_c))

img_similarity.py

import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib
 
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
 
 
def aHash(img):
    # 均值哈希算法
    # 缩放为8*8
    img = cv2.resize(img, (8, 8))
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 64
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if gray[i, j] > avg:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str
 
 
def dHash(img):
    # 差值哈希算法
    # 缩放8*8
    img = cv2.resize(img, (9, 8))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ''
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if gray[i, j] > gray[i, j + 1]:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str
 
 
def pHash(img):
    # 感知哈希算法
    # 缩放32*32
    img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:8, 0:8]
 
    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash
 
 
def calculate(image1, image2):
    # 灰度直方图算法
    # 计算单通道的直方图的相似值
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + \
                     (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree
 
 
def classify_hist_with_split(image1, image2, size=(256, 256)):
    # RGB每个通道的直方图相似度
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data
 
 
def cmpHash(hash1, hash2):
    # Hash值对比
    # 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。
    # 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似
    # 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 不相等则n计数+1,n最终为相似度
        if hash1[i] != hash2[i]:
            n = n + 1
    return n
 
 
def getImageByUrl(url):
    # 根据图片url 获取图片对象
    html = requests.get(url, verify=False)
    image = Image.open(BytesIO(html.content))
    return image
 
 
def PILImageToCV():
    # PIL Image转换成OpenCV格式
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = Image.open(path)
    plt.subplot(121)
    plt.imshow(img)
    print(isinstance(img, np.ndarray))
    img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    print(isinstance(img, np.ndarray))
    plt.subplot(122)
    plt.imshow(img)
    plt.show()
 
 
def CVImageToPIL():
    # OpenCV图片转换为PIL image
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = cv2.imread(path)
    # cv2.imshow("OpenCV",img)
    plt.subplot(121)
    plt.imshow(img)
 
    img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    plt.subplot(122)
    plt.imshow(img2)
    plt.show()
 
 
def bytes_to_cvimage(filebytes):
    # 图片字节流转换为cv image
    image = Image.open(filebytes)
    img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
    return img
 
 
def runAllImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31
 
    if para1.startswith("http"):
        # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)
 
        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)
 
    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n1 = cmpHash(hash1, hash2)
    print('均值哈希算法相似度aHash:', n1)
 
    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n2 = cmpHash(hash1, hash2)
    print('差值哈希算法相似度dHash:', n2)
 
    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)
    print('感知哈希算法相似度pHash:', n3)
 
    n4 = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n4)
 
    n5 = calculate(img1, img2)
    print("单通道的直方图", n5)
    print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))
    print("%.2f %.2f %.2f %.2f %.2f " % (1 - float(n1 / 64), 1 -
                                         float(n2 / 64), 1 - float(n3 / 64), round(n4[0], 2), n5[0]))
 
    plt.subplot(121)
    plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))
    plt.subplot(122)
    plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))
    plt.show()
 
 
def runtwoImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31
 
    if para1.startswith("http"):
        # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)
 
        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)
 
 
    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)
 
    n4 = classify_hist_with_split(img1, img2)
 
    return n3, n4
 
 
 
if __name__ == "__main__":
    p1 = '/Users/Desktop/11/24.jpeg'
    p2 = '/Users/Desktop/11/25.jpeg'
    runAllImageSimilaryFun(p1, p2)

总结

到此这篇关于Python列表删除重复元素与图像相似度判断及删除的文章就介绍到这了,更多相关Python列表删除重复元素内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python基础教程之Hello World!
Aug 29 Python
Python中使用pprint函数进行格式化输出的教程
Apr 07 Python
按日期打印Python的Tornado框架中的日志的方法
May 02 Python
python中如何使用正则表达式的集合字符示例
Oct 09 Python
matplotlib绘制动画代码示例
Jan 02 Python
python实现简单的单变量线性回归方法
Nov 08 Python
python通过tcp发送xml报文的方法
Dec 28 Python
Python中py文件转换成exe可执行文件的方法
Jun 14 Python
python 批量修改 labelImg 生成的xml文件的方法
Sep 09 Python
DJANGO-URL反向解析REVERSE实例讲解
Oct 25 Python
Django项目中使用JWT的实现代码
Nov 04 Python
python基于win32api实现键盘输入
Dec 09 Python
使用python如何删除同一文件夹下相似的图片
May 07 #Python
python学习之panda数据分析核心支持库
Python基于Tkinter开发一个爬取B站直播弹幕的工具
May 06 #Python
Python爬虫之爬取最新更新的小说网站
May 06 #Python
Python基础之操作MySQL数据库
Python 如何安装Selenium
Django实现在线无水印抖音视频下载(附源码及地址)
You might like
php扩展ZF――Validate扩展
2008/01/10 PHP
php实现图形显示Ip地址的代码及注释
2014/01/20 PHP
表单提交验证类
2006/07/14 Javascript
IE FF OPERA都可用的弹出层实现代码
2009/09/29 Javascript
JS时间选择器 兼容IE6,7,8,9
2012/06/26 Javascript
JS中的prototype与面向对象的实例讲解
2013/05/22 Javascript
Javascript中判断变量是数组还是对象(array还是object)
2013/08/14 Javascript
js实现带搜索功能的下拉框实时搜索实时匹配
2013/11/05 Javascript
按Enter键触发事件的jquery方法实现代码
2014/02/17 Javascript
php的文件上传入门教程(实例讲解)
2014/04/10 Javascript
jquery实现显示已选用户
2014/07/21 Javascript
浅谈js中的闭包
2015/03/16 Javascript
webpack配置文件和常用配置项介绍
2017/04/28 Javascript
layui.js实现的表单验证功能示例
2017/11/15 Javascript
js合并两个数组生成合并后的key:value数组
2018/05/09 Javascript
vue项目,代码提交至码云,iconfont的用法说明
2020/07/30 Javascript
js动态生成表格(节点操作)
2021/01/12 Javascript
python的即时标记项目练习笔记
2014/09/18 Python
Python进行数据科学工作的简单入门教程
2015/04/01 Python
python实现逆波兰计算表达式实例详解
2015/05/06 Python
Flask框架中密码的加盐哈希加密和验证功能的用法详解
2016/06/07 Python
Python学习教程之常用的内置函数大全
2017/07/14 Python
python Event事件、进程池与线程池、协程解析
2019/10/25 Python
pytorch实现mnist分类的示例讲解
2020/01/10 Python
golang/python实现归并排序实例代码
2020/08/30 Python
Python计算矩阵的和积的实例详解
2020/09/10 Python
Champs Sports加拿大:北美最大的以商场为基础的专业运动鞋和服装零售商之一
2018/05/01 全球购物
经济实惠的豪华家具:My-Furniture
2019/03/12 全球购物
法律专业实习鉴定
2013/12/22 职场文书
本科生自荐信
2014/06/18 职场文书
职工年度考核评语
2014/12/31 职场文书
春季运动会开幕词
2015/01/28 职场文书
无违反计划生育证明格式
2015/06/24 职场文书
公司客户答谢酒会祝酒词
2015/08/11 职场文书
学者《孟子》名人名言
2019/08/09 职场文书
详解MySQL中timestamp和datetime时区问题导致做DTS遇到的坑
2021/12/06 MySQL